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The Missing Mass of the Universe

Zwicky 1933:
NGC1052-DF2

Rotation curves of galaxies
Zwicky 1933:
 bullet cluster
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There is a 4σ discrepancy between bottle and beam experimental measurements of the decay 
width of neutron.

This could be explained if neutron could partially decay to a DM particle Berezhiani INT talk ’17, 
Fornal Grinstein ’18.

Tightest constraint comes from Be^9 stability:  The mass of Be must be smaller than Mf plus 
the mass of two He^4 Berezhiani ‘18

Avoid proton decays

if hydrogen atom is unstable

if 
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The anomalous neutron decay leads to significant conversion of neutrons to DM inside the NS, 
softening the NS EoS, thus making NS unable to reach 2    Baym Beck Geltenbort Shelton ’18, Cline 
Cornell ’18

Adding repulsive DM self-interactions is barely consistent with 2        NS. Cline Cornell ’18, Grinstein 
Nielsen CK ’18.

Maximum mass without strong interactions Mpl^3/m^2 ~0.7

PSR J1614−2230  1.97 Black Widow,  ~2.4

It could be a subdominant component of the dark sector
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Neutron Stars

Very compact objects: 
Mass: 
Radius:
density:

Extreme Magnetic Fields: up to 

Result of Supernova II explosion 
of supermassive stars ~9-20 

No fusion and energy production

Fast Spinning: Periods msec to sec  (pulsars)
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The Interior of the Neutron Stars
• Atmosphere 
   thickness: ~1 m,                        
   density:
   composition: atoms, Fe…

credit: http://www.astro.umd.edu/~miller/Images/NStarInt.jpeg

• Outer Crust/Envelope
    thickness: ~hundreds of m
    density:                                  (neutron drip point) 
    composition: Fermi gas of electrons and lattice
    of neutron rich nuclei

• Inner Crust
    thickness: ~1-2 km
    density:                                  
    composition: electron gas, neutron rich atomic   
    nuclei and clusters and free neutrons

• Outer Core
    thickness: ??
    density:                                  
    composition: free electrons, (superconducting) 
    protons, (supefluid) neutron

• Inner Core
    thickness: the rest
    density:             ??                     
    composition: exotic phases, quark core, color superconductive         
    phases, meson condensation, other hadronic phases

http://www.astro.umd.edu/~miller/Images/NStarInt.jpeg
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The Neutron Star EoS 

Outer Crust

Neutron drip point

as long as neutrons are confined within nuclei, at it becomes energetically favourable to have free neutrons

Inner Crust pasta phases
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The Neutron Star EoS 

Outer Core: weak equilibration modified Urca process

neutron decay inside neutron star

Inner Core: potential exotic 
quark phases

EoS are constrained by mass-radius relations, GW
EoS+ Tolman Oppenheimer Volkoff

Maximum mass without strong interactions ~0.7
PSR J1614−2230  1.97 Black Widow,  ~2.4
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Neutron Anomalous Decay & Neutron 
Stars

Using typical EoS for nuclear matter and the TOV equation, one can get 
the mass-radius relation of a NS with chemical equilibrium between DM and neutrons

Baym,  Beck, Geltenbort, Shelton ‘18 



Baryon-DM Interactions via the Higgs 
Portal

The Higgs portal induces neutron-DM interactions



Baryon-DM Interactions via the Higgs 
Portal

Energy density

chemical equilibrium

Grinstein Nielsen CK PRL ’19

DM Self-Interactions constraints
Constraints from rapid cooling of stars



Asymmetric Fermionic Dark Stars

CK, Nielsen ‘15 

Tolman-Oppenheimer-Volkoff with Yukawa 
self-interactions



Gravitational Waves from Dark Stars

Giudice, McCullough, 
Urbano ‘16

Observation
• Gravitational Waves: 
• DS+DS->DS or BH                                                                                                             
• DS+NS-> DS*
• DS+BH->BH
• Spinning DS



Tidal Deformations of Dark Stars

How stars deform in the presence of an external gravitational field?

V=-(1/2)ε x xij
i j

Q =-λεij ij

λ= 
Love number

Maselli, Pnigouras,Nielsen,
CK, Kokkotas, 17



Conclusions

Neutron Decay Anomaly
• if this persists, deviation from SM
• strong constraints from NS
• most likely a subdominant component of DM

Asymmetric Dark Stars
• can be probed by gravitational waves
• New Dark Stars distinguishable from NS and BH binaries
• Interesting new binary mergers


