1. ARIES task

Task: Define the network of technologies and subjects in the R&D accelerator field.

Classifications done by

- 1. Accelerator Technologies
- 2. Accelerator Components
- 3. Accelerator Concepts
- 4. Accelerator Fields
- 5. Different strategic interests: generic R&D, technological platforms, specific subjects, ...

The industry, involved on each interest.

2. Key Accelerator Research Areas

The previous work in WP3 and WP2 of TIARA [1,2] identified the areas related with accelerator R&D. These were classified as follows:

- 1. Accelerator Technologies
- 2. Accelerator Components
- 3. Accelerator Concepts
- 4. Accelerator Fields

3. Key Technical Issues

3.1. Accelerator Technologies [1]

ACCELERATOR TECHNOLOGIES		
Key Accelerator Research Area	Key Technical Issue	
Electronics and Software	xTCA Standards	
	LLRF cost, performance	
	Radiation-Induced Outgassing and Secondary Particle Generation	
UHV	Low Outgassing Rates to Limit Pumping Times	
	Wall Chamber Conductivity and Eddy Currents	
RF sources	Energy efficiency	
	Solid State Technology RF Sources	
Cryogenics	Cryoplant Efficiency Improvements	
	Cryogenic Distribution and Cryostat Insulation	
Alignment and Stabilization	Laser and Wire Positioning Systems	
	Nanometer Level Stabilization	
Power converters	Energy storage, energy efficiency, cost	
Machine protection	Quench protection, improve reliability	
Radiation issues	Determination of Prompt Radiation Levels	
	Component Activation Handling	
	Radiation hard electronics and materials	
	Compact Shielding	

3.2. Accelerator components [1]

ACCELERATOR COMPONENTS		
Key Accelerator Research Area	Key Technical Issue	
Sources and Injectors	High Brightness Photo Injectors	
•	High Intensity Heavy Ion Injectors	
	High Intensity Proton Injectors	
	High-polarization electron/positron sources	
	Hollow beams for proton beam collimation	
	RFQ development	
	Beam funneling	
RF structures	High Gradient Acceleration at Low RF Breakdown Rates	
	Development and engineering of C-Band and X-Band Structures	
	Consolidation of the Nb Technology for Maximum Yield at Highest Gradients	
	Improvements of the "Low Beta" Cavity Technology	
	CW superconducting radiofrequency	
	Coupler for SRF Cavities at High Average Power	
	Overcoming the Performance Limits of Bulk Niobium	
	Crab cavity Developments	
	RF Structures for 6D Muon Beam Cooling	
	Variable Frequency Resonators for Synchrotrons or FFAG	
RF systems	Optimization of RF Systems for high brilliance damping rings	
	X-Band and C-Band RF Systems	
	Precision LLRF control	
SC magnets	Material and Technologies for the 20 T Range and Beyond	
	Fast Cycling SC Magnets	
	Engineering Challenges for High Field Magnets	
	Cryogen-free magnet systems	
	High-Field short period undulators	
	High Field Small Magnets using rare-earth pole tips	
Conventional NC magnet	Compact Magnets	
systems	Radiation Resistant Magnets	
systems	Insertion Devices for X-Ray Production and Damping Rings	
	Pulsed Magnets and Kickers	
	Transparent Injection in Top-Up Schemes	
	Fast pulsed quadrupole magnets for beam lines	
Diagnostics and	Beam Position Monitor Development	
instrumentation	Beam Size and Emittance Monitor Devices Development	
	Synchronization, is or sub-is	
	Beam Intensity and Loss detectors	
Targetry	Challenges for High Power Targets for Secondary Particle Production	
	Radiation Damage Phenomena in Target Materials	
	Monte Carlo Particle Transport Codes Validation	
	Collimation Systems	
	Bent Crystal channeling	

3.3. Accelerator Concepts [1]

ACCELERATOR CONCEPTS		
Key Accelerator Research Area	Key Technical Issue	
Accelerator Design	Design for Reliability and Availability	
	Beam Losses and Machine Protection at High Beam Power	
	Compactness and Simplicity	
	Energy Efficiency and Storage	
Beam Dynamics	Enhanced Beam Modeling Tools and Experimental Code Validation	
	High Luminosity and High Energy Hadron and Lepton Colliders	
	Beam Stability and Lifetimes in Circular Accelerators	
	Small Emittance Beam Generation and Transport	
	Transport of electrons in plasma accelerating structures	
	Low Losses in High Intensity Linacs	
	High Reliability Operation	
	Laser-Beam Interaction for Acceleration and X-Ray Production	
	Fast Acceleration for Unstable Particles	
	Develop New Seeding Techniques for FELs	
	Circularly Polarized X-Ray FELs	

FEL processes	
	Attosecond Pulse Generation
Beam cooling	Electron and Stochastic Cooling for Heavy Ion Beams
	Ionization Cooling
New techniques for high gradient acceleration (laser-plasma etc.)	Self Injection Laser Wake-Field Acceleration
	External Injection in Laser Plasma Waves Below Wave Breaking
	External Injection in Particle Wake-Field Acceleration
	Proton and light Ion Generation with Laser Driven Plasmas
Medical and Industrial Accelerators	Improvement in Dose Delivery for Hadron Therapy
	Image Guided Radiation Therapy
	Cost and Complexity Reduction of Medical Accelerators
	Boron Neutron Capture Therapy
	Production of PET Isotopes and Tracers
	Acceleration Driven Systems for Nuclear Waste Transmutation
	Accelerators for Fusion
	Industrial and Societal Applications
	Environmental Applications
	Accelerators for Detection of Illegal Nuclear Material

3.4. Accelerator Fields [2]

The following field of research or respective communities of scientist involved with accelerator technology are identified:

- Particle Physics
- Nuclear Physics
- 3rd & 4th Generation Light Sources
- Neutron Sources
- Accelerators for Medical Applications
- Accelerator-Driven Nuclear Reactors
- Fusion
- Industry

Field/ community	Identified body
Particle Physics	ECFA, ESPP
Nuclear physics	<u>NuPECC</u>
Light sources (3 rd , 4 th generation)	LEAPS
	(EFELC, XFEL, ESRF)
Neutron sources	LENS*
Medical applications	<u>ENLIGHT</u>
	PTCOG
ADSR	(MYRRHA)
Fusion energy	<u>F4E, (IFMIF)</u>
Industry	ARIES, AMICI,
	FUSUMATECH industry
	bodies

*League of advanced European Neutron Sources

4. Running Accelerator Projects

TIARA: A consortium with general scope: coordination on accelerator technologies ARIES: sustainability of R&D AMICI: sustainability of Technological Platforms EASITRAIN: training FUSUMATECH: sustainability of determined aspects of R&D

We cannot ask the industry to make the field sustainable

The co-funding of Member States has deeply analyzed in H2020, with known-results (50-50% acceptable at most).

CE money just for start and consolidate communities is a fallacy.

INFRAINNOV-04 must be useful for implementing a support on the whole picture, R&D, TF, TP.

References:

[1] TIARA Report on R&D Infrastructures. Infrastructure Survey Report. Report WP3-2012-004. 23 February 2012

[2] TIARA Report on Collaboration with Other Bodies. Report WP2.2.2 Identification of Bodies with which collaboration is needed. 2 July 2012