Measurement of the "Energy Kick"

- **Reminder : Energy change due to crossing angle**
 - See talks from <u>Dmitry Shatilov</u> and <u>Emmanuel Perez</u>

- Transverse kick from a charged "slice" of the opposite bunch is perpendicular to its trajectory (in ultra-relativistic case). To first order, the kick is proportional to the opposite bunch population.
- Due to the crossing angle (actually, large Piwinski angle), transverse kicks have longitudinal components for the particles, and therefore affect their energy.
- The signs of energy change are different "before" and "after" IP.
- The whole energy change depends on the particle's Z-coordinate.
- Integrated effect is 0, except when the particle experiences a collision with a particle of the opposite bunch The truncated integral is equivalent to an average shift of the beam energy
- The transverse kick has also a component along the x axis,
 The truncated integral is equivalent to an average shift of the collision crossing angle

• Average beam energy shift +70 keV [+60 keV (Dmitry) to +80 keV (Emmanuel)]

Why does it matter ?

- The beam energy is measured with resonant depolarization
 - With a few transversally polarized single bunches

However

- "Single" means that these bunches do not experience collisions
 - And therefore, they do not experience this energy shift
- The measured beam energy is smaller than the collision beam energy
 - By (70±10) keV on average
 - i.e., of the same order as the precision of the measurement
 - This shift needs therefore to be measured with a reasonable accuracy (<10%)</p>

A few useful relations

• Let δE be the beam energy (E) kick, and $\delta p_{x,z}$ the corresponding $p_{x,z}$ kicks

- $p_x = E \sin \alpha/2$; $p_z = E \cos \alpha/2$.
 - For E = 45.6 GeV and α = 30 mrad, p_x = 684 MeV and p_z = 45.594 GeV
- $\delta p_x = k \cos \alpha/2$; $\delta p_z = k \sin \alpha/2$ (the force is perpendicular to the opposite bunch trajectory)
- $E^2 = p_x^2 + p_y^2 + p_z^2 \Rightarrow E\delta E = p_x \delta p_x + p_z \delta p_z = 2kE \cos \alpha/2 \sin \alpha/2 = 2p_x \delta p_x = 2p_z \delta p_z$.

$$\delta p_x = E \delta E/2p_x$$
; $\delta p_z = E \delta E/2p_z$

- For E = 45.6 GeV, α = 30 mrad, and δ E = 70 keV : δp_x = 2.3 MeV and δp_z = 35 keV
- Note: $\delta p_x/p_x = 0.34\%$, while $\delta p_z/p_z < 10^{-6} \Rightarrow$ Increase of crossing angle

A few useful relations (cont'd)

- $\hfill\square$ Let $\delta\alpha$ the increase of the crossing angle α
 - Reminder : $p_x = E \sin \alpha/2$
 - $\delta p_x/p_x \sim \delta E/E + \delta \alpha/\alpha \implies \delta \alpha/\alpha = \delta p_x/p_x \delta E/E = 0.34\% 0.00015\% = 0.34\%$
 - → For α = 30 mrad, $\delta \alpha$ = 0.102 mrad
- Centre-of-mass energy $\sqrt{s} = 2E \cos(\alpha/2) = 2p_z$
 - Centre-of-mass energy increase $\delta \sqrt{s} = 2\delta p_z = E/p_z \times \delta E$
 - $\delta\sqrt{s} = \delta E = 70 \text{ keV}$
 - → Warning $! \delta \sqrt{s} \neq 2\delta E$: the boost along x does not change \sqrt{s}
- Relation between $\delta \sqrt{s}$ and $\delta \alpha$
 - $\delta\sqrt{s} = 2\delta p_z = 2\delta p_x \times p_x/p_z = 2\delta p_x \times \tan(\alpha/2) \simeq \delta p_x \alpha = p_x \delta \alpha = E \sin\alpha/2 \delta \alpha$
 - Let ΔE , $\Delta \alpha$ and $\Delta \delta \alpha$, the precisions with which E, α , and $\delta \alpha$ are measured
 - ➡ The uncertainty on the centre-of-mass energy shift amounts to:

 $\Delta \delta \sqrt{s} / \delta \sqrt{s} = \Delta E / E \oplus \Delta \alpha / \alpha \oplus \Delta \delta \alpha / \delta \alpha \cong \Delta \delta \alpha / \delta \alpha$

 Measuring the C.M. energy shift amounts to measure the crossing angle increase with the same relative precision, typically < 10%.

Measurement of the crossing angle (reminder)

- □ Make use of $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events
 - Assuming one photon emitted along one of the two beams + E,p conservation

$$\begin{split} E^+ \sin \theta^+ \cos \varphi^+ + E^- \sin \theta^- \cos \varphi^- + |p_z^{\gamma}| \tan \alpha/2 &= \sqrt{s} \tan \alpha/2, \\ E^+ \sin \theta^+ \sin \varphi^+ + E^- \sin \theta^- \sin \varphi^- &= 0, \\ E^+ \cos \theta^+ &+ E^- \cos \theta^- &+ p_z^{\gamma} &= 0, \\ E^+ &+ E^- &+ |p_z^{\gamma}| / \cos \alpha/2 &= \sqrt{s} / \cos \alpha/2, \end{split}$$

- Where E^{\pm} are the measured energies of the μ^{\pm}
- Where α is the beam crossing angle (nominal : 30 mrad),
- Where the z axis is the bisector of the two beam axes,
- Where the two beam axes form the (x,z) plane,
- Where θ^{\pm} are measured with respect to the z axis in the FCC-ee frame,
- Where ϕ^{\pm} are measured with to the x axis in the plane transverse to the z axis,
- Where \sqrt{s} is the centre-of-mass energy of the collision

Solve E,p conservation for α and $x_{\gamma} = p_z(\gamma)/\sqrt{s}$

As a function of muon angles only (assumed resolution: 0.1 mrad)

$$\alpha = 2 \arcsin\left[\frac{\sin\left(\varphi^{-} - \varphi^{+}\right)\sin\theta^{+}\sin\theta^{-}}{\sin\varphi^{-}\sin\theta^{-} - \sin\varphi^{+}\sin\theta^{+}}\right]$$

$$x_{\gamma} = -\frac{x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}}{\cos(\alpha/2) + |x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}|}$$

With
$$x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}$$

- Absolute angles defined with respect to the (x,y,z) axes
 - z axis = bissector of the two beam axes
 - (x,z) plane = plane that contains the two beam axes
 - y = axis going upwards perpendicularly to that plane
- Tracker can be aligned perfectly with respect to these axes
 - By minimizing the RMS of the α distribution with respect to its Euler angles
 - See backup slides (and energy calibration paper)

Beam crossing angle determination

• With 10⁶ dimuon events (every 5 minutes at the Z pole, at full luminosity)

- Precision = 0.3 mrad / $\sqrt{N_{\mu\mu}}$, e.g., 0.01 mrad with 1000 dimuon events
 - Spread sensitive to anything happening in the transverse plane
 - \Rightarrow ϕ resolution, p_T of emitted photons, and (x,y,z) axes knowledge

Beam crossing angle increase determination

- Need bunches with increasing population (from o to nominal)
 - The filling period with the "bootstrapping" method is ideal for this purpose
 - Every 104 seconds, inject 10% of the bunch intensity at once for 1/8 of the bunches
 - Until the next 10% (104 seconds after), these bunches collide with nominal β*
 With bunch populations of 10%, 20%, ..., 100% of the nominal value
 - i.e., with a luminosity corresponding to 1%, 4%, 9%, 16%, 25%, ..., 100% of the nominal value
 - The crossing angle increases by 10%, 20%, 30%, ..., 100% of the total increase Proportionally to the bunch intensity And can be measured with a precision of 0.3 mrad / √N_{µµ}
 - Then repeat with the other 7/8 of the collider
 - The following figure shows the measured crossing angle for each of 10 steps
 - Averaged over the 8 filling sequences, with its uncertainty 0.3 mrad / $\sqrt{N_{\mu\mu}}$
 - + As a function of the squareroot of the total number of recorded dimuon events N $_{\mu\mu}$
 - Summed over the 8 filling sequences, randomized according to statistics
 - (N_{µµ} is proportional to the luminosity, and $\sqrt{N_{µµ}}$ is proportional to the bunch intensity)

Results

Measurement of the beam crossing angle increase at the Z pole

- Nominal crossing angle α : 29.9994 ± 0.0011 mrad (precision 3×10⁻⁵)
- Average crossing angle increase $\delta \alpha$: 0.1023 ± 0.0013 mrad (precision 1.3%)
 - $\Delta E/E$ and $\Delta \alpha/\alpha \ll \Delta \delta \alpha/\delta \alpha \Rightarrow \Delta \delta \sqrt{s} / \delta \sqrt{s} = \Delta \delta \alpha/\delta \alpha = 1.3\%$
 - → Average \sqrt{s} increase : $\delta\sqrt{s} = E \alpha/2 \delta\alpha = 69.9 \pm 0.9 \text{ keV}$

Precisions are directly proportional to the muon azimuthal resolution

• Average p_x kick: $\delta p_x = p_x \delta \alpha / \alpha = 2.33 \pm 0.03$ MeV

Results (cont'd)

• Off-peak points

- Dimuon rate smaller by a factor 7.8 (3.2) at $\sqrt{s} = 87.9$ (93.8) GeV
 - Precision on $\delta\sqrt{s}$ during the filling period:
 - ➡ 70 ± 2.7 keV at 87.9 GeV
 - ➡ 70 ± 1.7 keV at 93.8 GeV

Still very small with respect to the absolute √s calib. uncertainty (~100 keV) Very much acceptable contribution to the point-to-point uncertainty

WW threshold

- Dimuon rate smaller by a factor 3000 (than at the Z pole)
- Filling time (266 s instead of 1035 s) smaller by a factor 4
- δE , $\delta \sqrt{s}$ (90-120 keV) and $\delta \alpha$ (0.15 mrad) larger by a factor 1.5
 - Standalone precision on $\delta\sqrt{s}$ during the filling period:
 - ➡ 105 ± 45 keV
 - Still acceptable w.r.t. the absolute \sqrt{s} calib. uncertainty (~300 keV)
 - Can use nominal α from regular Z calibration runs (and larger statistics at full lumi)
 - ► Precision on $\delta\sqrt{s}$ reduced to ±15 keV (and to ±5 keV with 5 add'l minutes)

Results (cont'd)

- The method does not work at 240, 350, and 365 GeV
 - Dimuon rate too small (less than one event expected every 14 or 11 seconds)
 - Also: No transverse polarization, hence no calibration with resonant depolarization
- Need to rely on other methods (or not)
 - Calibration with $Z\gamma$ and WW events for the $\langle \sqrt{s} \rangle$ calibration
 - ±1.7 MeV at 240 GeV, ±5 MeV at 350 GeV, ±2 MeV at 365 GeV
 - Calibration of the theoretical prediction for $\delta\sqrt{s}$ at the Z pole and the WW threshold
 - And extrapolation to 240, 350, and 365 GeV.
 - Effect anyway much smaller than 2 MeV, typically 100 keV
 - This bias contributes the systematic uncertainty in a negligible manner

Conclusion & outlook

- The beam energy and crossing angle kicks can be measured
 - At the Z pole and at the WW threshold
 - During the filling period
 - With an adequate precision
- There is no need to measure these kicks at higher energy
 - Effects can be predicted with an adequate precision with calibration at lower energies
- Data taking may prove difficult during transfer from booster to main ring
 - Once every 104 (27 seconds) seconds at the Z pole (WW thresold)
 - Tracker designs must accommodate this delicate step with HV On
- Alternative methods at full luminosity should be explored if too difficult
 - e.g., with a few bunches with lower intensity?
 - Or using the natural bunch intensity spread ? (I have no idea of what it could be...)

Backup slides

- **D** Prepared for FCC week in Amsterdam
 - Written up in the energy calibration paper
 - See draft at https://www.overleaf.com/11630130cmkmfpvyhhgb

Control the angular resolution to 0.01 mrad?

- **Q:** How to measure the angular resolution to 10% or better
 - For any value of θ and ϕ ?
- A: Take a muon track in dimuon events
 - Refit it with the odd hits, on the one hand, and with the even hits, on the other
 - And compare the angles
 - Need only 100 tracks in each (θ , ϕ) bin for a 10% precision
 - 10⁶ dimuon events = 5 minutes at the Z pole = bins of 3×3 (mrad)²
 - Expected to be stable in time
 - Precision (or bin size) improves with dimuon statistics

Absolute tracker alignment

- **a** Absolute angle determination is (usually) not an easy task
 - Requires alignment of the local (detector) frame with the natural (FCC-ee) frame
 - Z axis = solenoid axis vs bissector of the two beam axes
 - (X,Z) plane = horizontal plane vs plane containing the two beam axes
- \Box Spread of α increases with anything happening in the transverse plane
 - E.g., rotation around the Z axis changes both X and Y directions

• Similarly, rotation around the X (Y) axis changes Y (X) direction

Detector alignment

 $\hfill\square$ Minimize the spread of the α distribution to find the three Euler angles

- Note: α spread dominated by the ϕ resolution (here 0.1 mrad)
 - Precisions quadratically improves with the resolution in φ (here o.1 mrad)

Detector alignment

- **Improve the angle corresponding to a rotation around the Y axis**
 - X and Z information get mixed by such a rotation
 - Resuting in a strong (linear) correlation between x_{γ} and α :

Detector alignment

• Minimize the correlation between x_{γ} and α :

- Improves the precision on that angle by a factor of five.
 - Reach a precision of 0.1 μ rad on α and of 10⁻⁷ on x_{γ}
 - Variation of the x_{γ} spread already insignificant with 100 times less events