Measurement of the "Energy Kick"

- Reminder : Energy change due to crossing angle

- See talks from Dmitry Shatilov and Emmanuel Perez

- Transverse kick from a charged "slice" of the opposite bunch is perpendicular to its trajectory (in ultra-relativistic case). To first order, the kick is proportional to the opposite bunch population.
- Due to the crossing angle (actually, large Piwinski angle), transverse kicks have longitudinal components for the particles, and therefore affect their energy.
- The signs of energy change are different "before" and "after" IP.
- The whole energy change depends on the particle's Z-coordinate.
- Integrated effect is 0 , except when the particle experiences a collision with a particle of the opposite bunch The truncated integral is equivalent to an average shift of the beam energy
- The transverse kick has also a component along the x axis, The truncated integral is equivalent to an average shift of the collision crossing angle
- Average beam energy shift +70 keV [+60 keV (Dmitry) to +80 keV (Emmanuel)]

Why does it matter ?

- The beam energy is measured with resonant depolarization
- With a few transversally polarized single bunches

However

- "Single" means that these bunches do not experience collisions
- And therefore, they do not experience this energy shift
- The measured beam energy is smaller than the collision beam energy
- By (70 ± 10) keV on average
- i.e., of the same order as the precision of the measurement
- This shift needs therefore to be measured with a reasonable accuracy (<10\%)

A few useful relations

- Let δE be the beam energy (E) kick, and $\delta p_{x_{x . z}}$ the corresponding $p_{x_{, z}}$ kicks

- $p_{x}=E \sin \alpha / 2 ; p_{z}=E \cos \alpha / 2$.
- For $\mathrm{E}=45.6 \mathrm{GeV}$ and $\alpha=30 \mathrm{mrad}, \mathrm{p}_{\mathrm{x}}=684 \mathrm{MeV}$ and $\mathrm{p}_{\mathrm{z}}=45.594 \mathrm{GeV}$
- $\delta p_{x}=k \cos \alpha / 2 ; \delta p_{z}=k \sin \alpha / 2$ (the force is perpendicular to the opposite bunch trajectory)
- $\mathrm{E}^{2}=\mathrm{p}_{\mathrm{x}}{ }^{2}+\mathrm{p}_{\mathrm{y}}{ }^{2}+\mathrm{p}_{\mathrm{z}}{ }^{2} \Rightarrow E \delta E=\mathrm{p}_{\mathrm{x}} \delta \mathrm{p}_{\mathrm{x}}+\mathrm{p}_{\mathrm{z}} \delta \mathrm{p}_{\mathrm{z}}=2 \mathrm{kE} \cos \alpha / 2 \sin \alpha / 2=2 \mathrm{p}_{\mathrm{x}} \delta \mathrm{p}_{\mathrm{x}}=2 \mathrm{p}_{\mathrm{z}} \delta \mathrm{p}_{\mathrm{z}}$.

$$
\delta p_{x}=E \delta E / 2 p_{x} \quad ; \delta p_{z}=E \delta E / 2 p_{z}
$$

- For $\mathrm{E}=45.6 \mathrm{GeV}, \alpha=30 \mathrm{mrad}$, and $\delta \mathrm{E}=70 \mathrm{keV}: \delta \mathrm{p}_{\mathrm{x}}=2.3 \mathrm{MeV}$ and $\delta \mathrm{p}_{\mathrm{z}}=35 \mathrm{keV}$
- Note: $\delta p_{x} / p_{x}=0.34 \%$, while $\delta p_{z} / p_{z}<10^{-6} \Rightarrow$ Increase of crossing angle

A few useful relations (cont'd)

- Let $\delta \alpha$ the increase of the crossing angle α
- Reminder: $p_{x}=E \sin \alpha / 2$
- $\delta p_{x} / p_{x} \sim \delta E / E+\delta \alpha / \alpha \Rightarrow \delta \alpha / \alpha=\delta p_{x} / p_{x}-\delta E / E=0.34 \%-0.00015 \%=0.34 \%$
\Rightarrow For $\alpha=30 \mathrm{mrad}, \delta \alpha=0.102 \mathrm{mrad}$
- Centre-of-mass energy $\sqrt{ } \mathrm{s}=2 \mathrm{E} \cos (\alpha / 2)=2 \mathrm{p}_{z}$
- Centre-of-mass energy increase $\delta \sqrt{ } \mathrm{s}=2 \delta \mathrm{p}_{\mathrm{z}}=\mathrm{E} / \mathrm{p}_{\mathrm{z}} \times \delta \mathrm{E}$
- $\delta \sqrt{ } \mathrm{s}=\delta \mathrm{E}=70 \mathrm{keV}$
- Warning ! $\delta \sqrt{ } s \neq 2 \delta \mathrm{E}$: the boost along x does not change $\sqrt{ } s$
- Relation between $\delta \sqrt{ }$ s and $\delta \alpha$
- $\delta \sqrt{ } s=2 \delta p_{z}=2 \delta p_{x} \times p_{x} / p_{z}=2 \delta p_{x} \times \tan (\alpha / 2) \simeq \delta p_{x} \alpha=p_{x} \delta \alpha=E \sin \alpha / 2 \delta \alpha$
- Let $\Delta \mathrm{E}, \Delta \alpha$ and $\Delta \delta \alpha$, the precisions with which E, α, and $\delta \alpha$ are measured
- The uncertainty on the centre-of-mass energy shift amounts to:
$\Delta \delta V_{S} / \delta V_{s}=\Delta E / E \oplus \Delta \alpha / \alpha \oplus \Delta \delta \alpha / \delta \alpha \cong \Delta \delta \alpha / \delta \alpha$
- Measuring the C.M. energy shift amounts to measure the crossing angle increase with the same relative precision, typically $<10 \%$.

Measurement of the crossing angle (reminder)

- Make use of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)$ events
- Assuming one photon emitted along one of the two beams + E,p conservation

$$
\begin{array}{lll}
E^{+} \sin \theta^{+} \cos \varphi^{+}+E^{-} \sin \theta^{-} \cos \varphi^{-}+\left|p_{z}^{\gamma}\right| \tan \alpha / 2 & =\sqrt{s} \tan \alpha / 2 \\
E^{+} \sin \theta^{+} \sin \varphi^{+}+E^{-} \sin \theta^{-} \sin \varphi^{-} & =0 \\
E^{+} \cos \theta^{+} & +E^{-} \cos \theta^{-} & +p_{z}^{\gamma} \\
E^{+}+E^{-} & =0 \\
\hline
\end{array}
$$

- Where $\mathrm{E}^{ \pm}$are the measured energies of the $\mu^{ \pm}$
- Where α is the beam crossing angle (nominal : 30 mrad),
- Where the z axis is the bisector of the two beam axes,
- Where the two beam axes form the (x, z) plane,
- Where $\theta^{ \pm}$are measured with respect to the z axis in the FCC-ee frame,
- Where $\phi^{ \pm}$are measured with to the x axis in the plane transverse to the z axis,
- Where $\sqrt{ }$ s is the centre-of-mass energy of the collision

Solve E,p conservation for α and $x_{\gamma}=p_{z}(\gamma) / \sqrt{s}$

- As a function of muon angles only (assumed resolution: 0.1 mrad)

$$
\alpha=2 \arcsin \left[\frac{\sin \left(\varphi^{-}-\varphi^{+}\right) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-}-\sin \varphi^{+} \sin \theta^{+}}\right]
$$

$$
x_{\gamma}=-\frac{x_{+} \cos \theta^{+}+x_{-} \cos \theta^{-}}{\cos (\alpha / 2)+\left|x_{+} \cos \theta^{+}+x_{-} \cos \theta^{-}\right|}
$$

$$
\text { With } \quad x_{ \pm}=\frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+}-\sin \theta^{-} \sin \varphi^{-}}
$$

- Absolute angles defined with respect to the (x, y, z) axes
- z axis $=$ bissector of the two beam axes
- (x, z) plane = plane that contains the two beam axes
- $y=$ axis going upwards perpendicularly to that plane
- Tracker can be aligned perfectly with respect to these axes
- By minimizing the RMS of the α distribution with respect to its Euler angles
- See backup slides (and energy calibration paper)

Beam crossing angle determination

- With 10^{6} dimuon events (every 5 minutes at the Z pole, at full luminosity)

- Precision $=0.3 \mathrm{mrad} / \sqrt{ } \mathrm{N}_{\mu \mu}$, e.g., 0.01 mrad with 1000 dimuon events
- Spread sensitive to anything happening in the transverse plane
- ϕ resolution, p_{T} of emitted photons, and $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ axes knowledge

Beam crossing angle increase determination

- Need bunches with increasing population (from o to nominal)
- The filling period with the "bootstrapping" method is ideal for this purpose
- Every 104 seconds, inject 10% of the bunch intensity at once for $1 / 8$ of the bunches
- Until the next 10% (104 seconds after), these bunches collide with nominal β^{*}

With bunch populations of $10 \%, 20 \%, \ldots, 100 \%$ of the nominal value
i.e., with a luminosity corresponding to $1 \%, 4 \%, 9 \%, 16 \%, 25 \%, \ldots, 100 \%$ of the nominal value

- The crossing angle increases by $10 \%, 20 \%, 30 \%, \ldots, 100 \%$ of the total increase

Proportionally to the bunch intensity
And can be measured with a precision of $0.3 \mathrm{mrad} / \sqrt{ } \mathrm{N}_{\mu \mu}$

- Then repeat with the other 7/8 of the collider
- The following figure shows the measured crossing angle for each of 10 steps
- Averaged over the 8 filling sequences, with its uncertainty $0.3 \mathrm{mrad} / \sqrt{ } \mathrm{N}_{\mu \mu}$
- As a function of the squareroot of the total number of recorded dimuon events $\mathrm{N}_{\mu \mu}$
- Summed over the 8 filling sequences, randomized according to statistics
- ($N_{\mu \mu}$ is proportional to the luminosity, and $\sqrt{ } N_{\mu \mu}$ is proportional to the bunch intensity)

Results

- Measurement of the beam crossing angle increase at the Z pole

- Nominal crossing angle $\alpha: 29.9994 \pm 0.0011 \mathrm{mrad}$ (precision 3×10^{-5})
- Average crossing angle increase $\delta \alpha$: $0.1023 \pm 0.0013 \mathrm{mrad}$ (precision 1.3\%)
- $\Delta \mathrm{E} / \mathrm{E}$ and $\Delta \alpha / \alpha<\Delta \delta \alpha / \delta \alpha \Rightarrow \Delta \delta \sqrt{ } / \delta \sqrt{ }=\Delta \delta \alpha / \delta \alpha=1.3 \%$
- Average $\sqrt{ }$ s increase : $\delta \sqrt{ } \mathrm{s}=\mathrm{E} \alpha / 2 \delta \alpha=69.9 \pm 0.9 \mathrm{keV}$
- Average p_{x} kick: $\delta p_{x}=p_{x} \delta \alpha / \alpha=2.33 \pm 0.03 \mathrm{MeV}$

Precisions are directly proportional to the muon azimuthal resolution

Results (cont'd)

- Off-peak points
- Dimuon rate smaller by a factor 7.8 (3.2) at $\sqrt{ } \mathrm{s}=87.9$ (93.8) GeV
- Precision on $\delta \sqrt{ }$ s during the filling period:
- $70 \pm 2.7 \mathrm{keV}$ at 87.9 GeV
- $70 \pm 1.7 \mathrm{keV}$ at 93.8 GeV

Still very small with respect to the absolute $\sqrt{ } \mathrm{s}$ calib. uncertainty ($\sim 100 \mathrm{keV}$)
Very much acceptable contribution to the point-to-point uncertainty

- WW threshold
- Dimuon rate smaller by a factor 3000 (than at the Z pole)
- Filling time (266 s instead of 1035 s) smaller by a factor 4
- $\delta E, \delta \sqrt{ }$ (90-120 keV) and $\delta \alpha$ (0.15 mrad) larger by a factor 1.5
- Standalone precision on $\delta \sqrt{ }$ s during the filling period:
- $105 \pm 45 \mathrm{keV}$

Still acceptable w.r.t. the absolute $\sqrt{ } \mathrm{s}$ calib. uncertainty ($\sim 300 \mathrm{keV}$)

- Can use nominal α from regular Z calibration runs (and larger statistics at full lumi)
- Precision on $\delta \sqrt{ }$ reduced to $\pm 15 \mathrm{keV}$ (and to $\pm 5 \mathrm{keV}$ with 5 add'l minutes)

Results (cont'd)

- The method does not work at 240,350 , and 365 GeV
- Dimuon rate too small (less than one event expected every 14 or 11 seconds)
- Also: No transverse polarization, hence no calibration with resonant depolarization
- Need to rely on other methods (or not)
- Calibration with $Z \gamma$ and $W W$ events for the $<\sqrt{ } s>$ calibration
- $\pm 1.7 \mathrm{MeV}$ at $240 \mathrm{GeV}, \pm 5 \mathrm{MeV}$ at 350 GeV , $\pm 2 \mathrm{MeV}$ at 365 GeV
- Calibration of the theoretical prediction for $\delta \sqrt{ }$ s at the Z pole and the $W W$ threshold
- And extrapolation to 240 , 350 , and 365 GeV .
- Effect anyway much smaller than 2 MeV, typically 100 keV
- This bias contributes the systematic uncertainty in a negligible manner

Conclusion \& outlook

- The beam energy and crossing angle kicks can be measured
- At the Z pole and at the WW threshold
- During the filling period
- With an adequate precision
- There is no need to measure these kicks at higher energy
- Effects can be predicted with an adequate precision with calibration at lower energies
- Data taking may prove difficult during transfer from booster to main ring
- Once every 104 (27 seconds) seconds at the Z pole (WW thresold)
- Tracker designs must accommodate this delicate step with HV On
- Alternative methods at full luminosity should be explored if too difficult
- e.g., with a few bunches with lower intensity ?
- Or using the natural bunch intensity spread ? (I have no idea of what it could be...)

Backup slides

- Prepared for FCC week in Amsterdam
- Written up in the energy calibration paper
- See draft at https://www.overleaf.com/11630130cmkmfpvyhhgb

Control the angular resolution to 0.01 mrad ?

- Q: How to measure the angular resolution to 10% or better
- For any value of θ and ϕ ?
- A: Take a muon track in dimuon events
- Refit it with the odd hits, on the one hand, and with the even hits, on the other
- And compare the angles
- Need only 100 tracks in each (θ, ϕ) bin for a 10% precision
- 10^{6} dimuon events $=5$ minutes at the Z pole $=$ bins of $3 \times 3(\mathrm{mrad})^{2}$
- Expected to be stable in time
- Precision (or bin size) improves with dimuon statistics

Absolute tracker alignment

- Absolute angle determination is (usually) not an easy task
- Requires alignment of the local (detector) frame with the natural (FCC-ee) frame
- Z axis = solenoid axis vs bissector of the two beam axes
- (X, Z) plane = horizontal plane vs plane containing the two beam axes
- Spread of α increases with anything happening in the transverse plane
- E.g., rotation around the Z axis changes both X and Y directions

- Similarly, rotation around the $X(Y)$ axis changes $Y(X)$ direction

Detector alignment

- Minimize the spread of the α distribution to find the three Euler angles

- Note: α spread dominated by the ϕ resolution (here 0.1 mrad)
- Precisions quadratically improves with the resolution in ϕ (here 0.1 mrad)

Detector alignment

- Improve the angle corresponding to a rotation around the Y axis
- X and Z information get mixed by such a rotation
- Resuting in a strong (linear) correlation between x_{γ} and α :

10 million dimuon events

Detector alignment

- Minimize the correlation between x_{γ} and α :

- Improves the precision on that angle by a factor of five.
- Reach a precision of $0.1 \mu \mathrm{rad}$ on α and of 10^{-7} on x_{γ}
- Variation of the x_{γ} spread already insignificant with 100 times less events

