Review of Safe Limits for Injection and Extraction Devices

A. Perillo-Marcone, T. Polzin, F.X. Nuiry, J. Maestre, M. Calviani EN-STI-TCD

Outline

- Injection Protection Absorbers TDIS
- Static Mask to protect MSD Magnets TCDS
- Movable Mask to protect Q4 TCDQ
- LHC Dump TDE

TDIS

LHCPA

LHCPA 3.2

- Machine protection in case of beam mis-steering during LHC filling
- Intercepts beam in case of MKI kickers malfunctions/timing errors

LHCPA 5CMS

IP8

LHCRA 6

HRMT45 – Integral test

Goal: Integral test of the module under beam. To reproduce temperatures/stresses in the back-stiffener comparable to HL-LHC 320b beam.

TCDS/TCDQ

TCDS – A fixed diluter block installed immediately upstream of the MSD magnets(IR6) TCDQ – A mobile diluter block to protect the Q4 magnets, (IR6)

→Asynchronous firing of MKD kickers would cause the beam to sweep over the septum walls

TCDS

A. Perillo-Marcone - MPP Workshop

TCDS Thermal / Structural Simulations

TCDS (low Z)							
Material	Graphite C2020 (block 2)	Block 4 C-C 1.7	Block 9 C-C 1.4	Graphite C2020 (block 19)			
Max. Temp. [°C]	396	798	1141	402			
Max. Comp. Stress. [MPa]	-20	-23	-27	-33			
Comp. Strength	-35 -70		-70	-35			
Max. Tens. Stress. [MPa]	29	18	51	38			
Tensile Strength	35	61	84	35			

For block 9 → Material properties are not known. Values written are assumptions based on 1.7 g/cc grade

CDS (TIGALANA) block 22

1003 (110A14V), block 23				
	Area at Max plastic strain			
Temp. [°C]	255			
Eq. Stress [MPa]	601 🛕			
Yield Strength	529			
Tensile Strength	645			

The titanium block undergoes plastic deformation (1.2%) on part of the surface.

TCDS – Preliminary Conclusions

- A risk of failure caused by the high stresses and elevated temperature is expected in block 19 (graphite).
- Plastic deformation expected in titanium block. This is to be avoided.
- Material characterisation needed for more reliable simulations.
- Design optimisation recommended
 - Substituting at least blocks 19 and 20 with 2D CFC (1.7 g/cc)
 - Check if titanium is really needed for MSDA protection / or slicing it
 - Replacing titanium with another material

 \rightarrow 36 blocks of 250 mm of carbon composite (CFC) with different densities:

- 4 blocks of high density CFC (1.75 g/cm³)
- 16 blocks of low density CFC (1.4 g/cm³)
- 16 blocks of high density CFC (1.75 g/cm³)

Cross-section of the TCDQ structure showing the graphite (left) and CFC (right) absorber blocks

TCDQ Energy Deposition

Parameters	HL-LHC25ns		
Bunch Intensity	2.3E11		
Number of bunches	50		
Beam energy	7 TeV		
Pulse length	950ns		
Beam emittance	2.1 µm		

Beam

- The TCDQ gap affects the energy deposition. \geq
- \geq From the mechanical point of view, the 4th and 8th blocks (high and low density CFC blocks, respectively) are the most affected.

 1.4×10^{11} 1.7×10¹¹ 2.0×10^{11} 2.3×10^{11} 2.5 mm 2.0 kJ/g 2.4 kJ/g 3.3 kJ/g 2.8 kJ/g (1300°C) (1500°C) (1700°C) (1900°C) 2.7 kJ/g 3.0 mm 1.7 kJ/g 2.0 kJ/g 2.4 kJ/g (1100°C) (1600°C) (1300°C) (1500°C) 2.4 kJ/g 3.4 mm 1.5 kJ/g 1.8 kJ/g 2.1 kJ/g (1000°C) (1200°C) (1300°C) (1500°C) 3.9 mm 1.3 kJ/g 1.5 kJ/g 1.8 kJ/g 2.1 kJ/g (900°C) (1000°C) (1200°C) (1300°C)

Table 2. Peak doses as function of the gap and beam intensity [2]

Stresses in TCDQ

	Bunch intensity 1.7e11		Bunch intensity 2.3e11			
	CFC 4 th block	CFC 8 th block	CFC 4 th block	CFC 8 th block		
	2D FEM					
Max. Temp [°C]	1401	1534	1837	2018		
Max. Princp. Stress [Mpa]	31/33(wave refl.) Y-dir	35/43(wave refl.) Y-dir	41/44(wave refl.) Y-dir	42 / 58 (wave reflection), Y-dir		
Min. Princp. Stress [Mpa]	-29 Y-dir	-39 Y-dir	-38 Y-dir	-48 Y-dir		
Compressive strength [Mpa]	-69.6 (X-dir) -88.6 (Y-dir) - 82.4 (Z-dir)	Not known	-69.6 (X-dir) -88.6 (Y-dir) -82.4 (Z-dir)	Not known		
Tensile strength [Mpa]	? (X-dir) 84 (Y-dir) 61 (Z-dir)	Not known	? (X-dir) 84 (Y-dir) 61 (Z- dir)	Not known		
Safety factor (based on stress)	2.5	2.4*	1.90 🛕	1.45*		

*Considering strength of 1.75 g/cc grade

Results highly dependent on the CTE

TCDQ - Conclusions

- Simulations for:
 - 2.0×10¹¹ ppb / 2.0 mm gap
 - 1.7×10¹¹ ppb / 2.5 mm gap

→ Targets integrity expected to be kept, but impossible to commit due to lack of material data.

- Simulations for 2.3×10¹¹ ppb / 2.5 mm gap
 - \rightarrow High temperature and high strain may lead to material failure.

Material characterisation needed

LHC Dump

8 M

Upgrades for LS2

- Downstream window
- Mechanical Connections
- Upstream window (to be done during YETS 21/22)
- Restraining of dump movement
- Instrumentation

Stresses in Downstream Window

The expected stresses for the upgraded window are safely within the limits

Loads in housing

Temperature °C

Von Mises Stresses (MPa)

Max T = 156 °C

Max VMS = 256 MPa Safety Factor = 1.2 !

A. Perillo-Marcone - MPP Workshop

Upstream window – YETS after LS2

- Redesign of window to cope with higher intensities
- Replacing SS with Ti-Gr5
- Removing CfC disk (5-10 mm Ti-Gr5 disk)
- Larger β function \rightarrow Lower loads

STUDIES UNDER WAY

Connection Upgrade

Goal : Reduce risks of N₂ leaks after high-intensity dumps

- Helicoflex seal replacement with EPDM seal
- Shifting of existing clamping chain ring to allow tightening of all four nuts
- Removal of bellow compression jacks during operation
- New clamping ring design

Restraining Dump Displacements

Instrumentation upgrade

- New interferometers, better suited for expected regimes
- Temperature sensors on the core housing
- Strain gauges on the core housing
- LVDTs

Vital to better understand the behavior of the dump, in view of producing a more robust design

Under discussion with EN/SMM...

TDE – Conclusions

Run 3: Assuming 1.8E11 ppb and 1.8 um

- Fewer interventions expected (more robust connections)
- DS window in Ti-Gr5 compatible
- US window in should be OK (Ti-Gr5 or larger β)
- Better understanding of dump dynamics
- Large displacements still possible to be monitored closely
- In case of dilution failure, graphite core may be at the limit (even more critical for HL operation)
- Core material characterisation required !

Thank you for your attention.

