LBDS-Overview

C. Bracco, W. Bartmann, E. Carlier, L. Ducimetiere, B. Goddard, N. Magnin, V. Senaj Acknowledgment: M.I. Frankl, M.A. Fraser, V. Rizzoglio and C. Wiesner MPP Workshop 2019

Outline

- LBDS and failure scenarios
 - Generators/magnets
 - Impact of operation at 7 TeV
- Impact on beam absorbers and dump (TCDQ, TCDS and TDE)
 - Intensity limitations (Antonio' s talk)
 - β^* leveling at TCDQ and BETS limits
- Possible strategy vs timeline (LS2, EYETS and LS3)

The LBDS

MKD: Extraction Kickers

Erratic: spurious firing of GTO stack (discharge or SEB). The higher the voltage the higher the risk!

After LS2 upgrade operation at **7 TeV** with lower voltage than pre-LS2 operation at 6.5 TeV → reduced risk of erratics!

Ceramic vacuum chamber

	Pre-LS2 (6.5 TeV)	Post-LS2 (7 TeV)
Number of magnets per ring	15	15
System deflection angle	0.275 mrad	0.275 mrad
Kick strength per magnet	0.397 Tm	0.428 Tm
Rise-time	< 2.7 µs*	< 2.7 µs*
Vacuum chamber inner diameter	56 mm	56 mm
Operating charging voltage	26.7 kV	25.6 kV
Flat-top duration	≥ 91 µ s	≥ 91 µs
Magnetic length	1.4 m	1.4 m

Magnets are built around a metallized ceramic vacuum chamber (no risk of flash-over)

*Abort gap duration=3 µs

MKD Erratic → Asynchronous Beam Dump

- Total deflection given by the sum of each kicker plus Q4 contribution
- 1 kicker fires → all remaining 14 are re-triggered (asynchronously wrt RF) within 1.3 µs → avoid loosing ~all beam on TCDQ

MKD Erratic → Asynchronous Beam Dump

- Total deflection given by the sum of each kicker plus Q4 contribution
- 1 kicker fires → all remaining 14 are re-triggered (asynchronously wrt RF) within 1.3 µs → avoid loosing ~all beam on TCDQ

- □ Type 1 ("standard"):
 - Spurious firing of one GTO stack, slow commutation (rise-time> 2.7 μs)
 - □ Reaction time: ≤1.3 µs
 - Origin: sparking of charge accumulated on insulators, intermediates amplitude noise coupled to re-trigger line, Single Event Burnout (SEB).

Type 2:

- $\hfill \label{eq:Fast commutation}$ Fast commutation (rise-time ~2.4 μs , missing current in GTO stack)
- □ Reaction time: ≥1.3 µs
- Origin: direct sparking between metal surfaces with +HV and ground potential – accumulated dust/insect initiated streamer leading to arc

Type 3:

- ~Normal commutation of multiple generators
- Reaction time: ≤1.3 µs
- Origin: strong perturbation on retrigger line (observed once without beam with 3 generators fired)

- □ Type 1 ("standard"):
 - Spurious firing of one GTO stack, slow commutation (rise-time> 2.7 μs)
 - Reaction time: ≤1.3 µs
 - Origin: sparking of charge accumulated on insulators, intermediates amplitude noise coupled to re-trigger line, Single Event Burnout (SEB).

Type 2:

- Fast commutation (rise-time ~2.4 μs, missing current in GTO stack)
- Reaction time: ≥1.3 µs
- Origin: direct sparking between metal surfaces with +HV and ground potential – accumulated dust/insect initiated streamer leading to arc

Type 3:

- ~Normal commutation of multiple generators
- Reaction time: ≤1.3 µs
- Origin: strong perturbation on retrigger line (observed once without beam with 3 generators fired)

TimeStamp: 26.02.2016-00:46:51.263535250

IVIEE VVOIKSHOP ZUIS

07/05/2019

- □ Type 1 ("standard"):
 - Spurious firing of one GTO stack, slow commutation (rise-time> 2.7 μs)
 - Reaction time: ≤1.3 µs
 - Origin: sparking of charge accumulated on insulators, intermediates amplitude noise coupled to re-trigger line, Single Event Burnout (SEB).

Type 2:

- Fast commutation (rise-time ~2.4 μs, missing current in GTO stack)
- □ Reaction time: ≥1.3 µs
- Origin: direct sparking between metal surfaces with +HV and ground potential – accumulated dust/insect initiated streamer leading to arc

Type 3:

- ~Normal commutation of multiple generators
- □ Reaction time: ≤1.3 µs
- Origin: strong perturbation on retrigger line (observed once without beam with 3 generators fired)

- □ Type 1 ("standard"):
 - Spurious firing of one GTO stack, slow commutation (rise-time> 2.7 μs)
 - Reaction time: ≤1.3 µs
 - Origin: sparking of charge accumulated on insulators, intermediates amplitude noise coupled to re-trigger line, Single Event Burnout (SEB).

Type 2:

- Fast commutation (rise-time ~2.4 μs, missing current in GTO stack)
- □ Reaction time: ≥1.3 µs
- Origin: direct sparking between metal surfaces with +HV and ground potential – accumulated dust/insect initiated streamer leading to arc

Type 3:

- ~Normal commutation of multiple generators
- Reaction time: ≤1.3 µs
- Origin: strong perturbation on retrigger line (observed once without beam with 3 generators fired)

MPP Workshop 2019

β^* leveling at TCDQ and BETS limits

- In order to guarantee the correct TCDQ positioning during the ramp \rightarrow added redundant HW interlock (BETS TCDQ): fully independent check of position wrt energy (pre-defined functions and limits, ~± 1 σ)
- Not possible varying TCDQ position outside BETS limits during β^* squeeze at fixed energy \rightarrow impact on TCDQ aperture in $\sigma \rightarrow$ protection $\rightarrow \beta^*$ reach

Can we set asymmetric limits? Not with present HW and no upgrade before LS3 but....

β^* leveling at TCDQ and BETS limits

- In order to guarantee the correct TCDQ positioning during the ramp \rightarrow added redundant HW interlock (BETS TCDQ): fully independent check of position wrt energy (pre-defined functions and limits, ~± 1 σ)
- Not possible varying TCDQ position outside BETS limits during β^* squeeze at fixed energy \rightarrow impact on TCDQ aperture in $\sigma \rightarrow$ protection $\rightarrow \beta^*$ reach

Can we set asymmetric limits? Not with present HW and no upgrade before LS3 but....

β^* leveling at TCDQ and BETS limits

- In order to guarantee the correct TCDQ positioning during the ramp \rightarrow added redundant HW interlock (BETS TCDQ): fully independent check of position wrt energy (pre-defined functions and limits, ~± 1 σ)
- Not possible varying TCDQ position outside BETS limits during β^* squeeze at fixed energy \rightarrow impact on TCDQ aperture in $\sigma \rightarrow$ protection $\rightarrow \beta^*$ reach

Can we set asymmetric limits? Not with present HW and no upgrade before LS3 but....

- Apply artificial offset between BETS settings and LVDTs
- Relaxed symmetric limits around settings ($\sim \pm 2\sigma$)
- Possible closing TCDQ during squeeze while insuring protection in case of asynchronous beam dump
- Position limits insure that hierarchy wrt other collimators is respected and that TCDQ not too close to the beam

MKB: Dilution Kickers

Switch GTO Stack		Pre-LS2 (6.5 TeV)	Post-LS2 (7 TeV)
MKBH much more sensitive to erratics!	Number of magnets per ring	6 V – 4 H	6 V – 4 H
	System deflection angle	0.277 - 0.278 mrad	0.278 - 0.277 mrad
After LS2 upgrade operation at 7TeV with lower voltage	Kick strength per magnet	1.000 – 1.508 Tm	1.077 – 1.624 Tm
	Magnet poles gap	70.9 – 36.9 mm	70.9 – 36.9 mm
than pre-LS2	Operating charging voltage	13.7 – 24.7 kV	14.8 – 23.5 kV
operation at 6 5TeV →	Field oscillating frequency	13.2 – 13.0 kHz	13.2 – 13.0 kHz
reduced risk of	Magnetic length	1.2 – 1.9 m	1.2 – 1.9 m
erratics on MKBH!			

No beam screen (no ٠ circulating beam)

Magnet housed in a vacuum tank Risk of flash-over in magnet during nominal dumps!

> Increased risk of flashover at 7TeV!

MPP Workshop 2019

MKB Waveform and Dilution Pattern @ TDE

MKBH and MKBV are powered with damped sinusoidal waveforms, shifted by 90° in phase, resulting in an e-shaped pattern at the TDE front face (~10% higher Voltage in MKBV than MKBH → slightly higher risk of flashover)

20

The proton density at the TDE strongly depend on the horizontal sweep velocity: maximum density corresponds to minimum velocity

Pre-LS2: in case of MKB erratic no re-triggering of remaining kickers occurs
→ synchronous beam dump request → dump executed within 1 LHC turn

Original assumption: up to 2 missing MKBs in case of 1 MKB spontaneously firing and perfect anti-phase

MKB Erratic \rightarrow Missing Dilution

Pre-LS2: in case of MKB erratic no re-triggering of remaining kickers occurs \rightarrow synchronous beam dump request \rightarrow dump executed within 1 LHC turn

Original assumption: up to 2 missing MKBs in case of 1 MKB spontaneously firing and perfect anti-phase

New failure: Erratic on MKBH during tests @ 7 TeV without beam \rightarrow Parasitic EM coupling through re-triggering line \rightarrow firing of neighboring generators \rightarrow Possible loosing \geq 2 MKBs

All possible patterns in case of loss of 1→4 and 1→6 dilution kickers and temperatures for HL-LHC beams (2.3e11 ppb) → possible going above 3000 C

Loss of MKBH more likely (80% higher generator voltage than MKBV) and more critical (only 4 kickers)

Possible limit on number of ppb and beam spot-size (front window)

MKB retriggering will be implemented in LS2 to avoid anti-phase in case of erratic (Nicola' s talk)

MKB Flashover – missing Dilution Current

- During a **nominal dump** a flash-over can occur:
 - Between HV and grounded bus-bar
 - Between HV and magnet ground
 - □ Between HV and vacuum tank
 - On the surface of an isolator
 - □ On the surface of the HV feedthrough
- The flash-over can propagate through the plasma to the magnet sharing the same vacuum tank

MKB Flashover – missing Dilution Current

- During a **nominal dump** a flash-over can occur:
 - □ Between HV and grounded bus-bar
 - Between HV and magnet ground
 - □ Between HV and vacuum tank
 - On the surface of an isolator
 - □ On the surface of the HV feedthrough
- The flash-over can propagate through the plasma to the magnet sharing the same vacuum tank
 - □ Original assumption: instantaneous propagation → simultaneous loss of 2 MKBVs
 - New failure: (~10 µs) delayed flashover of second magnet → residual current in the magnet and antiphase → loss of ≥3 MKBVs

MKB Flashover – missing Dilution Generator

- During a **nominal dump** a flash-over can occur:
 - Between HV and grounded bus-bar
 - Between HV and magnet ground
 - □ Between HV and vacuum tank
 - On the surface of an isolator
 - □ On the surface of the HV feedthrough
- The flash-over can propagate through the plasma to the magnet sharing the same vacuum tank
 - □ Original assumption: instantaneous propagation → simultaneous loss of 2 MKBVs
 - New failure: (~10 μ s) delayed flashover of second magnet → residual current in the magnet and antiphase → loss of ≥3 MKBVs

MKD/MKB Failure History

- □ 1 MKD erratic → asynchronous beam dump with 4 nominal bunches in the machine → no mis-kicked bunch and clean extraction
- □ 7 MKBH erratics → loss of horizontal dilution. Clear correlation with dirt and sparking activities. During Run 2: Improved with improved cleaning, sealing and dust raps plus lower resistor on GTO gate-cathode (less sensitive to sparks)
- □ 1 MKBV flashover → loss of vertical dilution. Magnet in lab ready for inspection (no clear sign of sparks with endoscopy)

As expected:

- Increased number of erratics when increasing generator Voltage (energy)
- Higher number of erratics on MKBH
- Higher number of flashover on MKBV

07/05/2019

Strategy vs Time

Increase reliability: reduce risk of erratics (lower Voltage), monitor switch status and faster reaction in case of failures.

Goal: ≤1 asynchronous beam dump and partial dilution per beam per year at 7TeV

- Several upgrades foreseen on generators and control system in LS2 including MKB re-triggering (<erratics and no anti-phase, Nicola' s talk)
- If needed, depending on MKBV inspection result, apply required modifications to improve HV bus-bars insulation in YETS
- If approved: add 2 MKBH per beam in LS3 → reduce Voltage by 30% in generators (<erratic) and magnets (<flashover) → less sensitivity to MKBH failures.