

LBDS - Changes during LS2

MPP Workshop 07.05.2019 – Nicolas Magnin for TE-ABT With the precious help of my TE-ABT colleagues, many thanks to all of them !

MPP Review 07.05.2019

Plan

- Present Limitations and Actions Taken
- Upgrade of HV Generators
- Upgrade of Re-Triggering System
- Commissioning Plan
- Summary

Present Limitations and Actions Taken

Main limitation on generator side is "Erratic" trigger of HV generators

- Risk of erratic firing strongly depends on voltage
 - Could be an issue for operation at 7.0 TeV
- An erratic on MKD causes an asynchronous dump with risk to protection devices
 - With higher beam intensity and energy, MKD re-trigger time should be reduced
- An erratic on MKB causes a partial dilution with risk to dump block
 - Missing MKB kicker cases should be limited

Two types of action taken during LS2:

- Limit the occurrence of erratic (= Upgrade of HV generators)
- Limit the consequences of erratic (= Upgrade of re-triggering system)

HV Generator Upgrade

MPP Review 07.05.2019

HV Gen Upgrade: Add 3rd Capacitor

Increase of the principal capacitor value by ~18%

 \rightarrow reduction of voltage by ~9% for the same current:

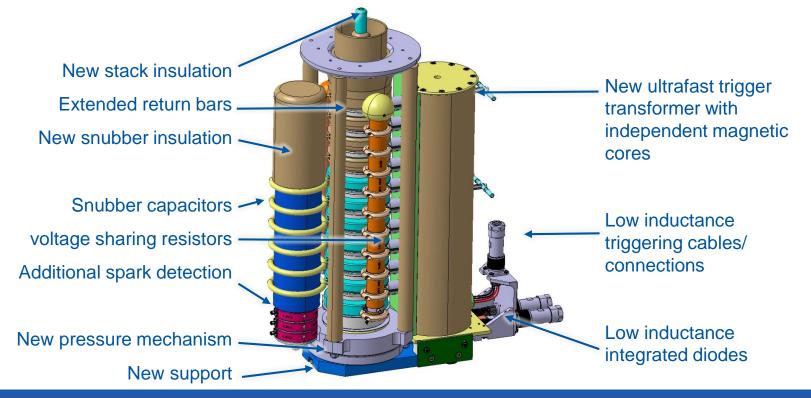
- 7 TeV: 28.7 kV today vs. 26.6 kV modified (~ 6.4 TeV today)
- 7.5 TeV: 31 kV today vs. 28.4 kV modified (~ 6.9 TeV today)

Pros:

significant reduction of probability of SEB and sparking related failures wrt today situation

Cons: Rise time increase by ~ 220 ns

Cost effective solution - adding 3rd small capacitor

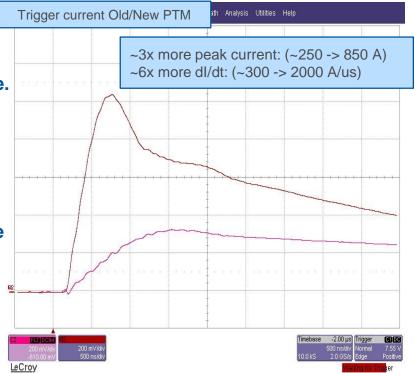

HV Gen Upgrade: New GTO Stack

Re-design of the GTO stack and its accessories

(voltage sharing resistors, snubber capacitors, HV dividers) in order to:

- Reduce the E-field down to < 1.5 MV/m (1/2 of air ionisation limit)
- Increase its sparking immunity in case of pollution
- Simplify its maintenance

Cons: increased stack inductance (165 nH vs 132 nH today) - rise time increase by ~ 15 ns

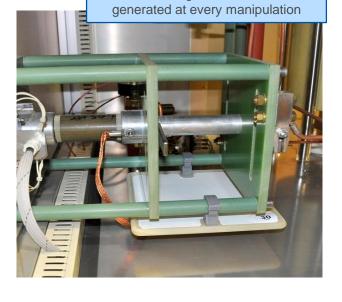


HV Gen Upgrade: New PTM

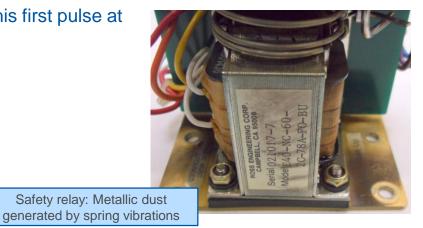
New Power Trigger Module (PTM):

- Increase trigger current and dl/dt for a better GTO switching
 Increased lifetime of GTOs.
 - => Lower turn-on delay and magnet current rise-time.
- Reduce propagation delays in low voltage electronics
 =>Lower global LBDS Re-Trigger time.
- Precise fixed Re-Trigger input level
 => Avoid partial triggering of PTM (could damage the stack)
- Improve diagnosis of output current and HV IGBT state
 > Detect IGBT problems before breakdown (PTM erratic)

Gain on trigger propagation delay in low voltage electronics: ~50 ns faster than actual PTM


HV Gen Upgrade: Other Improvements

Reduction of dust generation and protection from ingress:


- Separation of sensitive compartments
- Dust trap under mechanical earthing switch
- Modification of electromechanical safety relay supply Relay powered with 50 Hz AC current: Vibrations of spring generates metallic dust inside HV generators => Relay powered by DC current now.

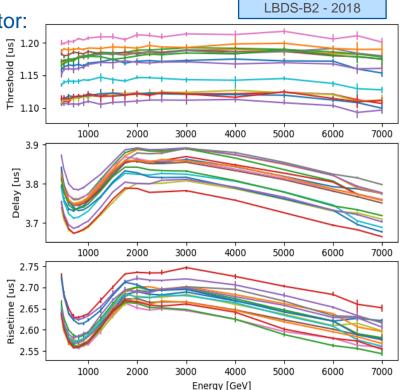
New compensation capacitor:

- First pulse at 450 GeV after a pulse at 6.5 TeV slightly different (Problem of magnetization of capacitor metallic case)
- Not a safety issue, but many XPOC error on this first pulse at 450 GeV, we had to increase the tolerance.

Manual Earthing Switch: Metallic dust

CERN

Impact of upgrade on AG length

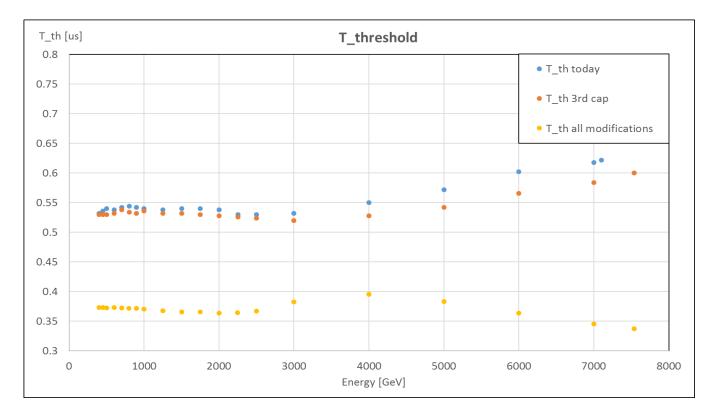

All time measurements depend on energy or generator:

- Threshold time
- Delay time
- Rise time = (Delay Threshold)

Min AG length = Max(Delay) - Min(Threshold) Over all energy range and all generators

On first 2 upgraded generators:

- Small increase ~70ns of Min AG length, but can be optimised and margin is sufficient
- => no request for more AG length = 3us



Measured between 450 – 7000 GeV:

System	Min Rise time [us]	Max Rise time [us]	Min AG length [us]
JU3 (series #1)	2.708	2.799	2.822
JU4 (series #2)	2.633	2.738	2.756
LBDS-B1 2018 (15 Generators)	2.535	2.731	2.751
LBDS-B2 2018 (15 Generators)	2.543	2.747	2.762

Impact of upgrade on Trigger Delay

Combination of increased capacitor and new triggering system: Threshold time = Trigger Delay **lowered by >100ns (= Faster Re-Trigger time)**

(Measured only on 1 generator, before / after upgrade it may vary with coming series of 30 generators...)

HV Gen Upgrade Summary

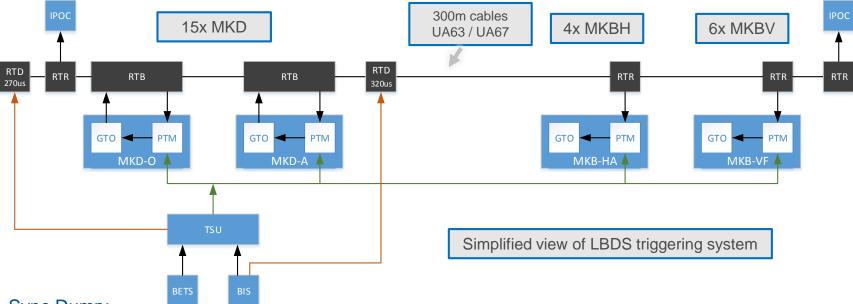
(MKBV works at lower voltage than MKD/MKBH, so operational voltage unchanged)

Generator	MKD	MKBH	MKBV
Increased Main capacitor equivalent +18% total for -9% operating voltage	X	X	
New GTO switch assembly	X	X	
New ultrafast trigger transformer	x		
New HV trigger cables and connectors	x	X	x
New Power Trigger Module	x	X	x
New Safety Relay DC Power	x	X	x
New compensation capacitor	x		
Segmented panels independent access to non-sensitive compartments		X	
Dust trap & protection	x	X	

HV Gen Upgrade - Impact on RUN 3

	RUN 2 6.5 TeV	RUN 3 7.0 TeV	
MKD nominal voltage	26.7	25.6	kV
MKD rise time *	2.65	2.75	μs
Abort gap requested	3	3	μs
Total SEB failure rate probability MKD **	0.1	0.005	У ⁻¹
Number of asynchronous dump / beam	<1	<1	У ⁻¹
MKBH nominal voltage	24.7	23.5	kV
MKBV nominal voltage	13.7	14.8	kV
Total SEB failure rate probability MKB **	0.15	0.0003	у -1
Number of partial dilution / beam	<1	<1	у -1

*) Combined effect of loss in stack, loss in capacitor increase, gain with trigger transformer and with power trigger **) HEH estimated: 5e-4 HeH/cm2/y. No measurements to confirm this value...



Re-Trigger System Upgrade

MPP Review 07.05.2019

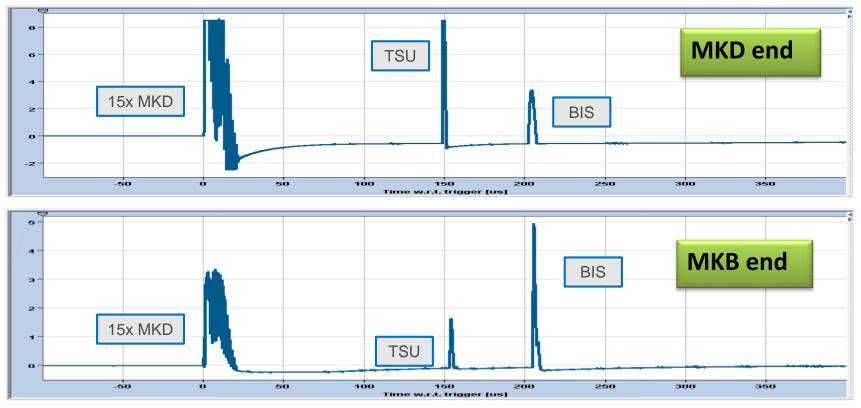
Current Re-Triggering System

Sync Dump:

- TSU cards receives Dump Request, and issue S-TRIG and A-TRIG (270us)
- When BIS goes faulty, CIBDS cards issue A-TRIG (320us) In case of total TSUs failure

Async Dump – MKD erratic:

• MKD Re-Trigger boxes: Inject energy on the RTL in case of MKD erratic


Diagnosis: IPOC at both ends to the RTL

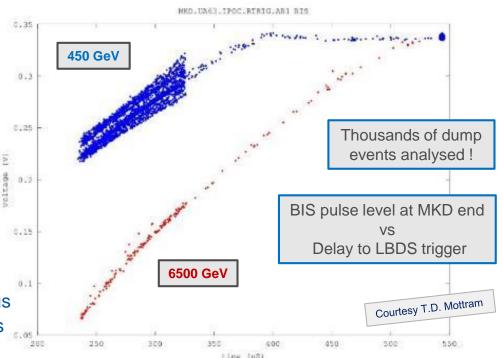
- Validation of RTL continuity
- Check TSU/BIS pulses presence (Redundant pulses not participating to normal dumps)

Re-Trigger Line Diagnosis - IPOC

Synchronous dump at 450 GeV

Redundant pulses do not participate to normal dump, how do we know that they are OK ? => IPOC checks continuity of RTL, and correct amplitude/position of TSU /BIS pulses **We see big attenuation of TSU / BIS pulses on the RTL**

Attenuation of TSU / BIS Pulses

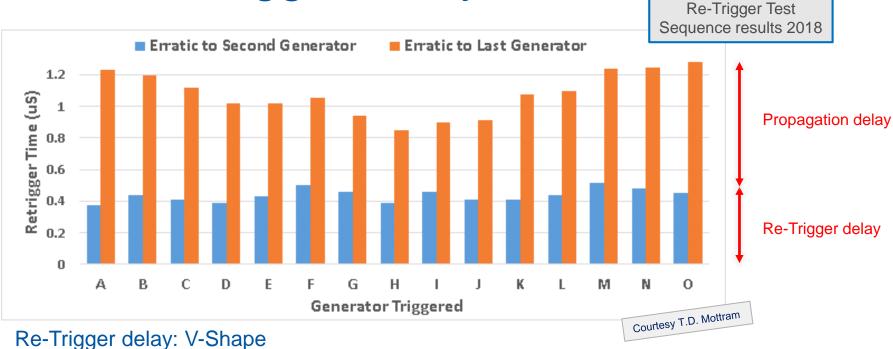

Problem of pulses attenuation is a **diagnosis** issue, **not a safety** issue (Attenuation of pulses AFTER trigger of LBDS)

Attenuation of pulses on the RTL depends:

- Beam energy (Generators Voltage)
- Position of pulse wrt LBDS trigger

Due to TSU resynchronisation with beam and BIS loop A/B delays:

- TSU pulse (270us) moves between ~180-270 us
- BIS pulse (350us) moves between ~230-540 us


After simulations and measurements, this problem is understood: It is due to **saturation of the output transformers in RTB**.

- Pulse propagated after dump see saturated transformers -> Strong attenuation
- With higher energy, the transformer saturates more -> Stronger attenuation
- Transformers desaturate slowly, so pulses sent later are less attenuated

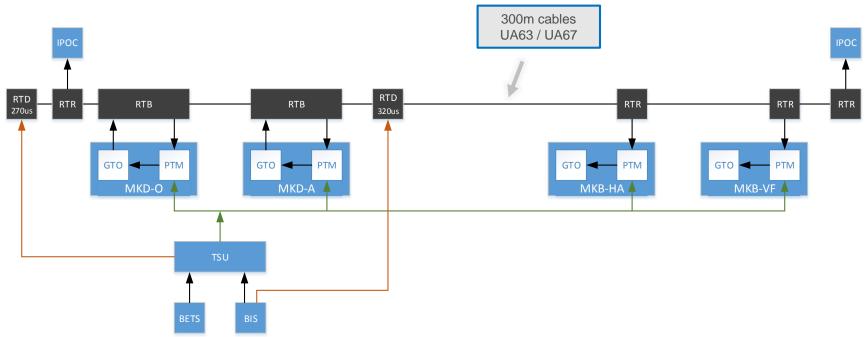
=> New MKD RTB design is needed to eliminate this diagnosis problem.

Total Re-Trigger Delay

- Detection delay is almost constant (<500 ns)
- Propagation delay depends on which generator self-triggered (~900 ns -> ~1300 ns)

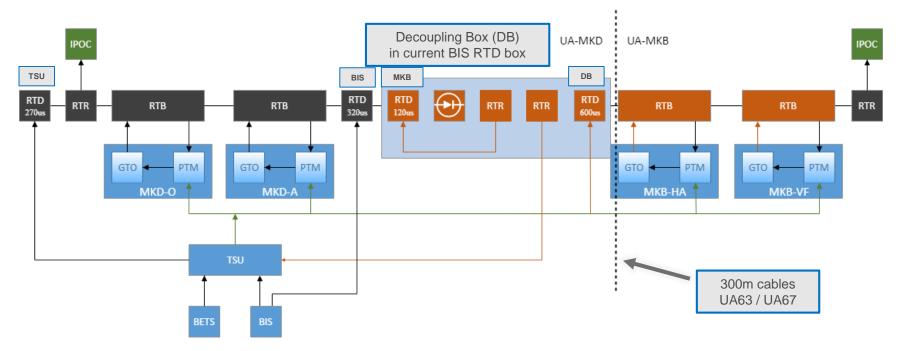
To diminish energy deposition on absorbers, shortest total re-trigger delay is desirables.

- Detection/Trigger delay cannot be improved more (>100ns gained with New HV generator)
- Propagation delay could be improved: Shorten RTL cables !



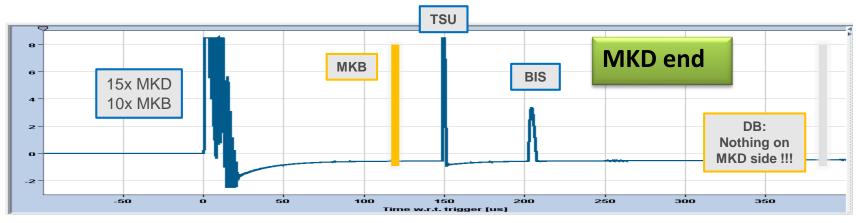
Reduce Re-Trigger Line Cable Length

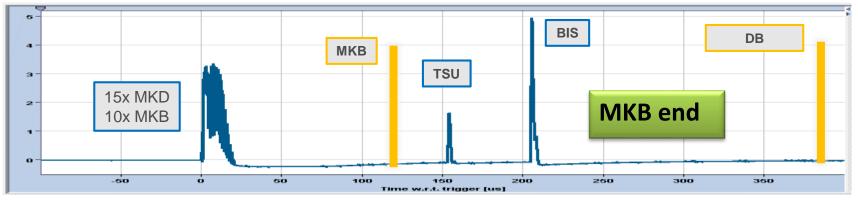
Current Re-Triggering – MKB Erratic



Sync Dump – MKB erratic:

- No MKB re-trigger boxes, so no systematic re-triggering of other kickers.
- BETS detects voltage drop in the generator triggered erratically (Slow detection, typ 1ms)
- BETS requests dump to TSU, then sync trigger all MKD / MKBs
- \Rightarrow This could yield in phase opposition between MKB magnets !
- \Rightarrow + Problem of coupling between MKBH HV generators = loss of more than 2 MKBH !
 - => We need a MKB Re-Triggering System


New MKB Re-Triggering System



- MKB Re-Trigger boxes: Inject energy on the RTL in case of MKB erratic
- Decoupling Box: Allows MKD->MKB, but blocks MKB->MKD RLT pulses
- New RTR to detect MKB erratic, and request a sync dump to TSUs
- New RTD 120 us to do async dump in case TSU do not react in <1 revolution
- New RTD 600 us to check decoupling diodes are blocking MKB erratic.

New MKB RTL Diagnosis – IPOC

More redundant pulses to be validated on RTL !

- 'MKB' pulse: Check that RTD pulse 120 us after MKB erratic is OK
- 'DB' pulse: Check that the DB diodes are still blocking MKB erratic pulses after the dump execution

=> Problem of attenuation of pulses on the RTL must be solved: We need a new MKD Re-Trigger Box !

Reliability Analysis of MKB Re-Trigger

Reliability analysis of this solution was performed:

- Calculated probability for "no dilution" failure is negligible (MTTF ~1e12 years)
- Expected increase in asynchronous dumps per year is very small (1 per 1000 years and beam)

Remark:

• This Re-Trigger line upgrade means increasing the complexity of LBDS, to solve limitations on the TDE...

Recommissioning Plan

- Individual System Tests (IST)
 - 6 weeks: Validation/calibration of all generators individually
- LOCAL Reliability Run (LRR):
 - 3 month: Test of full systems, ramping up/down, long flat-tops. LBDS not armed
- REMOTE Reliability Run (RRR):
 - 4 month: Local BIS loops to validate the LBDS armed in REMOTE. BETS connected to MB simulator.
- Cold Checkout:
 - 1 week (?): Reconnection of BETS to MB, TSU to BIS. Revalidation of all interlocks
- Commissioning with Beam:
 - Synchronisation of LBDS: Scan of rising edge. Validation of TSU synchronisation delays.

2020												2021																																		
Q2									Q3									Q4												Q1																
Apr			Ma	ay Jun					lut							Aug			Sep			Oct			Nov			Dec				Jan				Feb										
14 15 16 17	18	1	9 2	0 2	21 2	2	23	24	25	26	27	28	29	9 30	31	L 32	2 3	33 3	4	35 🕻	36	37 🗄	38	39	40	41	42	43	44	45	5 46	47	48	49	50	51 5	2 1	1	2	3	4	5	6	7	8	9
LHC Shutdown	LHC Shutdown Cool -down																Har	dware	com	mis	sion	ing																								
												L	.00	al Reli	liability Run											Remote								mote l	Relial	eliability Run										
															Local Reliability Run									tun		Remote Re								Relia	liability Run											

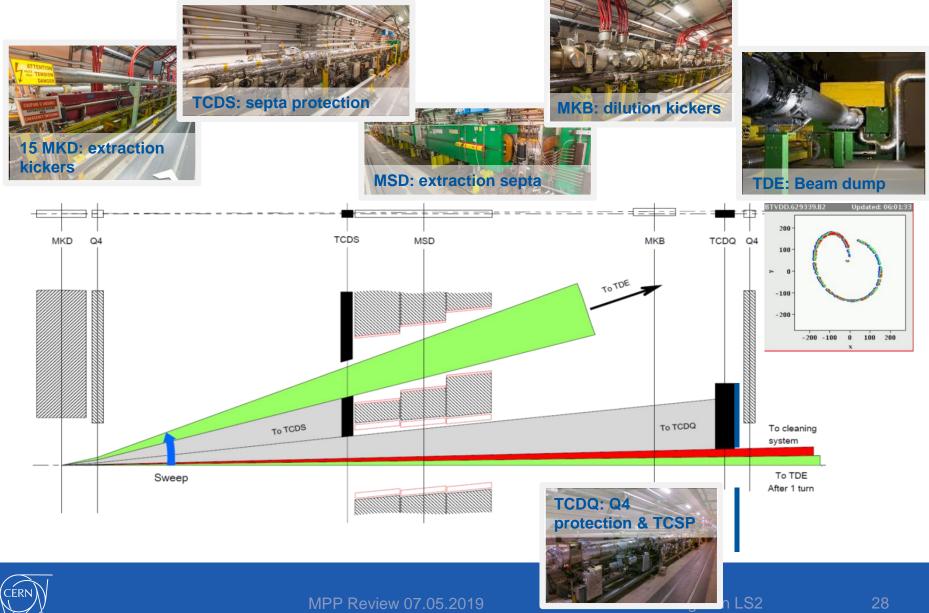
Summary

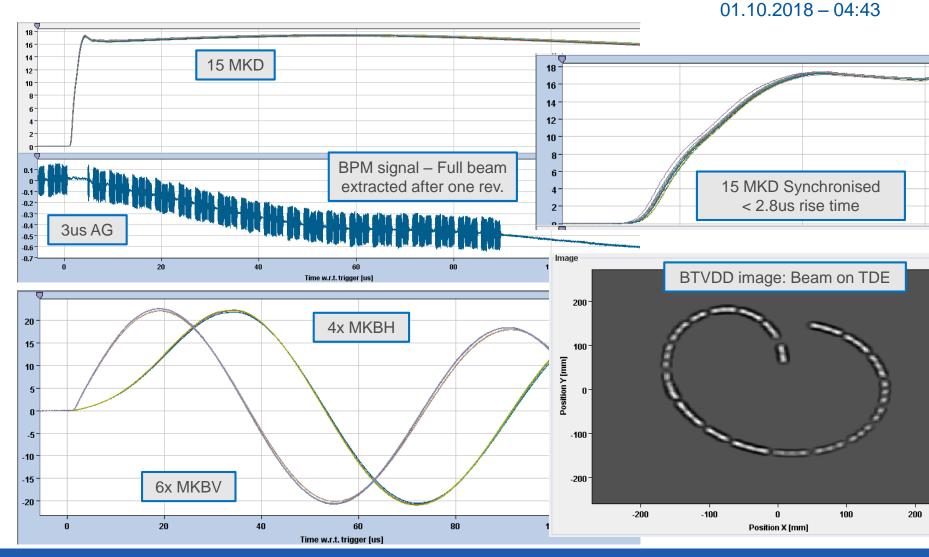
- Upgrades on generators and switches will further improve system reliability and availability for RUN 3 at 7 TeV operating energy
- No increase of Abort Gap length required
- Reduction of Re-Trigger delay expected with the new PTM and RTL cable length reduction
- Upgrade of MKD Re-Trigger Boxes: To solve redundant pulses attenuation = Diagnosis problem for IPOC (Not safety issue)
- Upgrade of MKB Re-Trigger System: To avoid antiphase between MKBs, and mask generator coupling problem

All modifications should maintain present specified failure rate for operation at 7 TeV:

- < 1 asynchronous dump / beam and year
- < 1 partial dilution / beam and year

Full recommissioning of LBDS needed after these numerous upgrades

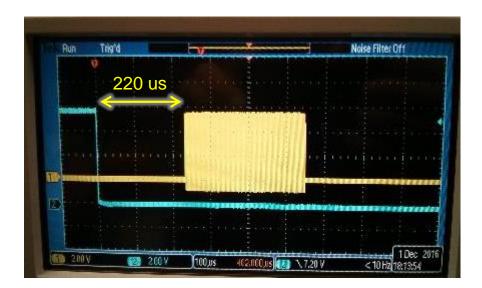




MPP Review 07.05.2019

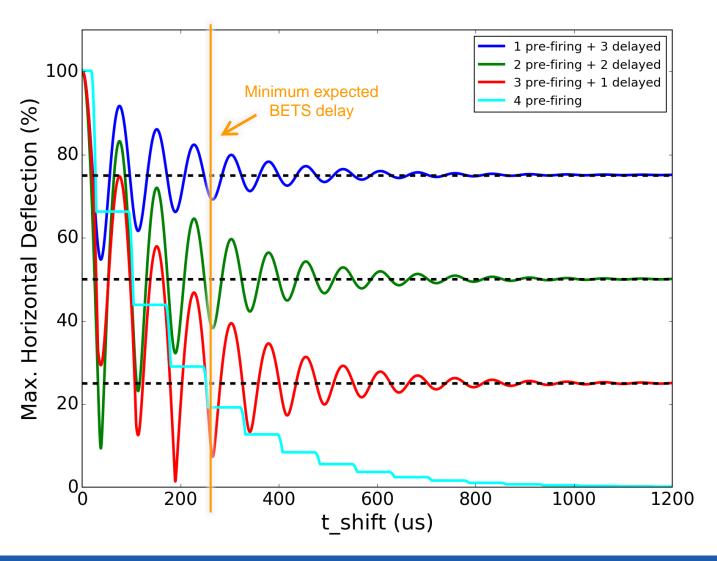
LBDS – Extraction Overview

MKD / MKB Waveforms – Sync Dump

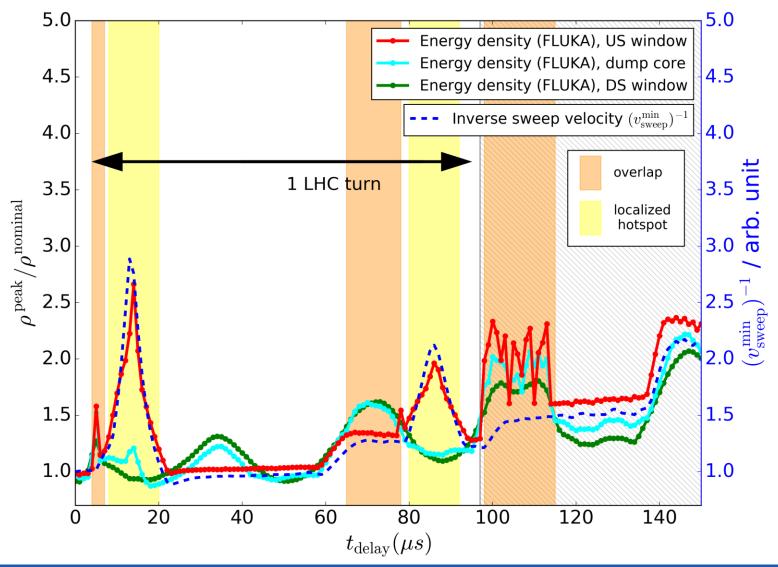


BETS Reaction Time

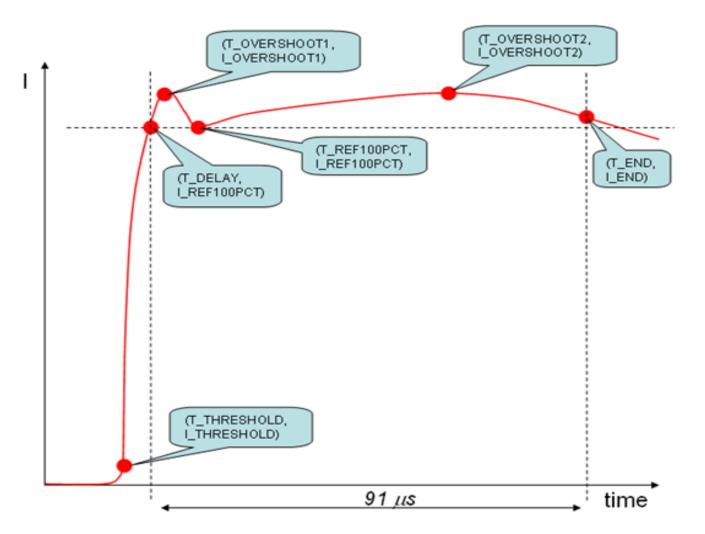
Minimum measured delay time from voltage drop to dump request:


≈ 220 us over >10e5 pulses

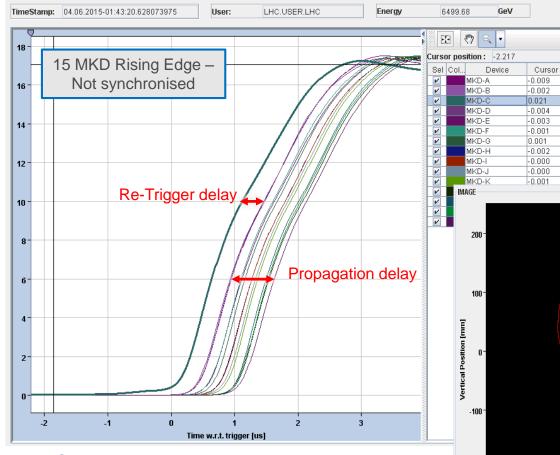
So delay from MKB erratic to LBDS Sync trigger is variable, much more than 1 LHC rev



MKB Erratic / BETS detection delay



MKB Erratic – TDE Studies


Extraction pulse definition

LBDS Changes in LS2

MKD erratic - Async Dump

Last MKD erratic: 04.06.2015 – 01:43

us

Units

kΑ

kΑ

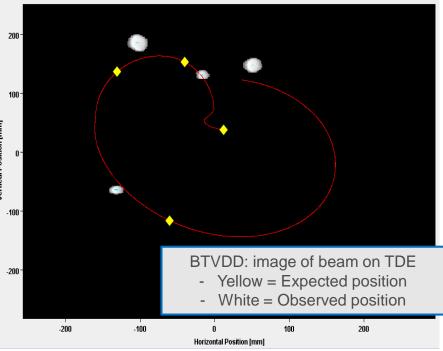
kA.

kΑ

kA.

kΑ

kΑ

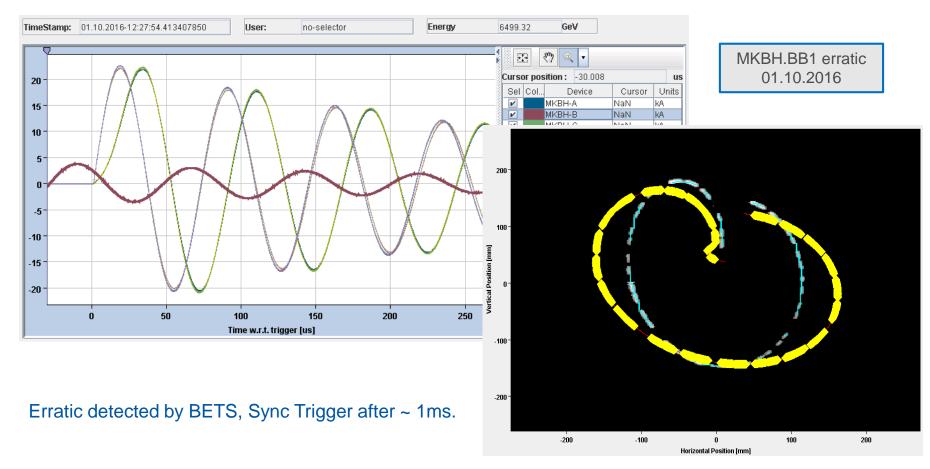

kΑ

kΑ

kΑ

kΑ

Luckily only 4 bunches in the LHC. No beam on MKDs rising edge: -> Clean dump



MKD-C erratic trigger, all MKDs are re-triggered.

- Re-Trigger delay (Erratic to second generator)
- Propagation delay (Second to last generator)

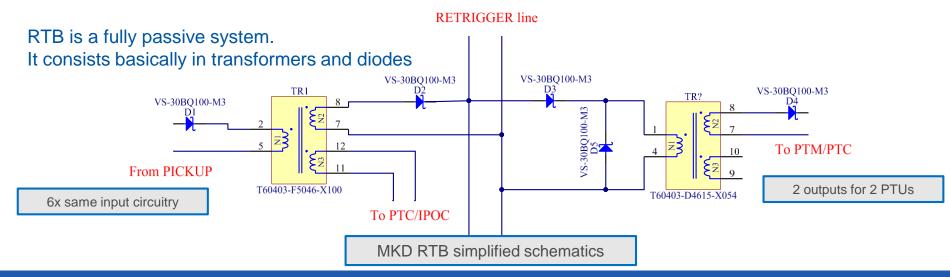
MKB erratic – Phase opposition

MKBH.BB1 not completely discharged, and in phase opposition with other MKBs.

=> Lost more than 1 MKBH (~1.2 in this case)

MKD RTB

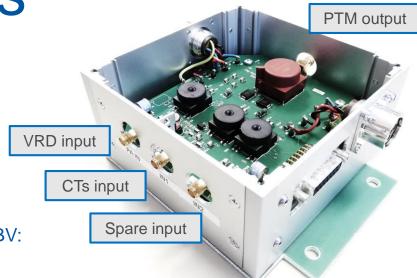
2 MKD Re-Trigger Box (RTB) for 2 RTL

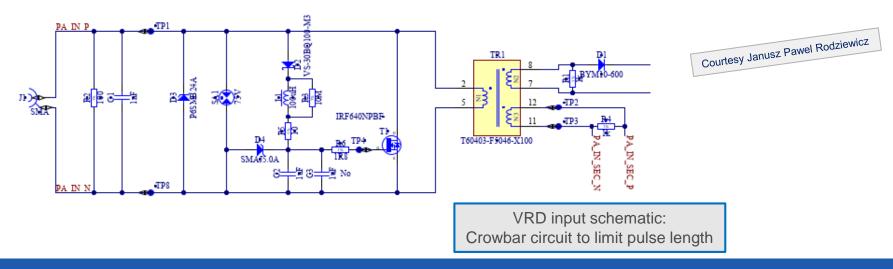

MKD generators are fully redundant, 2 'branches':

- 2 Main switches, with each 2 snubber CTs
- 2 Compensation switches, with each 2 snubber CTs
- 2 Main capacitors in parallel

Each box has 5 inputs (+ 1 spare):

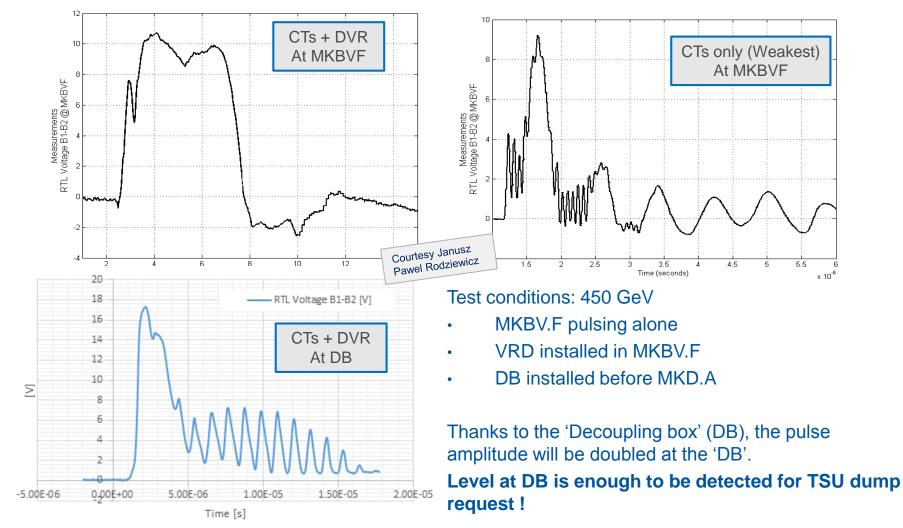
- CTs A/B: Main switch snubber current Branch A/B
- CTf A/B: Free-wheel current Branch A/B
- VRD: Main capacitor Voltage Retrigger Detector

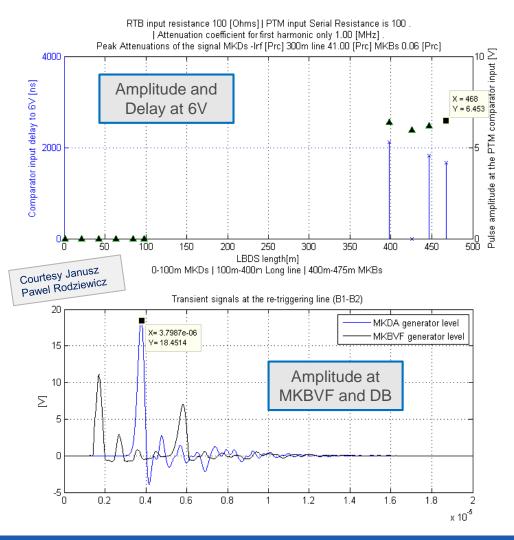



MKB RTB - Status

- Measures / Simulations of MKB pickups done
- Prototype build, measurements in LBDS done
- Schematics finalised
- PCB / Mechanics ongoing

To avoid polluting the RTL with periodic pulses from MKBV:


• Crowbar circuit at the DVR input of MKB RTB:



MKB RTB – Proto in LHC

MKB RTB – Simulation of RTL

Simulation conditions: 450 GeV

- MKBV.F pulsing alone
- DB installed before MKD.A

Simulation takes into account:

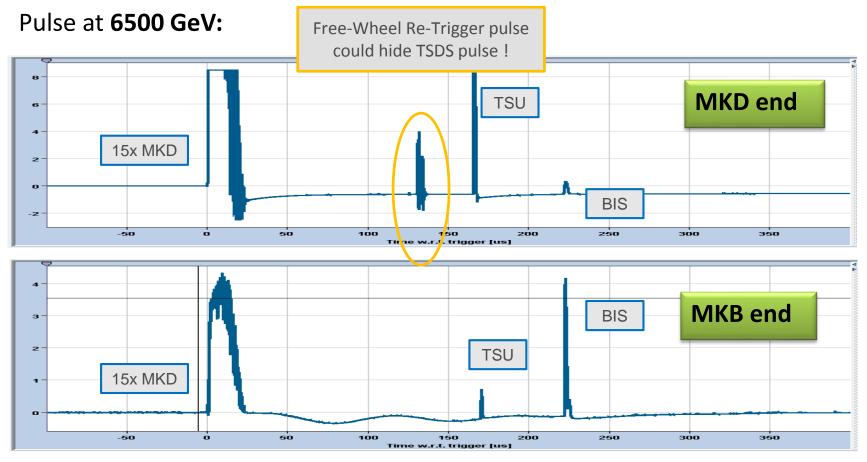
- New MKD RTBs (new transformers)
- New PTMs (Higher input impedance, 6V threshold)

CTs only (weakest) pick-up scenario:

One MKB will not be re-triggered.
 -> Needs domino effect at 450 GeV

With CTs + DVR, no domino effect.

R2E related items


SEB failure rate probability:

	Today setup @6.5 TeV PTM = IXGN100N170	Today setup @7.5 TeV PTM = IXGN100N170	Proposed modifications @7.5 TeV PTM = IXGN200N170
	2.68 kV/GTO (MKD) 2.47 kV/GTO (MKBH) 1.17 kV/IGBT (MKD+MKB)	3.1 kV/GTO (MKD); 2.87 kV/GTO (MKBH) 1.17 kV/IGBT (MKD+MKB)	2.84 kV/GTO (MKD); 2.58 kV/GTO (MKBH) 1.14 kV/IGBT (MKD+MKB)
MKD (600 GTO) [y ⁻¹]	6e-3	1.8	9e-2
MKD (360 IGBT) [y ⁻¹]	9e-2	9e-2	1.8e-2
MKBH (80 GTO) [γ ⁻¹]	1.2e-1	1.2	1.6e-1
MKB (120 IGBT) [y ⁻¹]	3e-2	3e-2	6e-3
Total AD (MKD GTO + IGBT) [y ⁻¹]	0.1	1.9	0.11
Total SD (MKB GTO + IGBT) [y ⁻¹]	0.13	1.23	0.17

Failure rate probability at 7.5 TeV comparable to current one at 6.5 TeV

Re-Trigger Line Diagnosis - IPOC

Stronger attenuation of TSU / BIS pulses on the RTL at higher energy ! Free-Wheel RTB input generates at ~130 – 160 us, should not hide redundant re-triggers -> Delays of TSU /BIS pulses moved from 200 / 250 us to 270 us / 320 us

