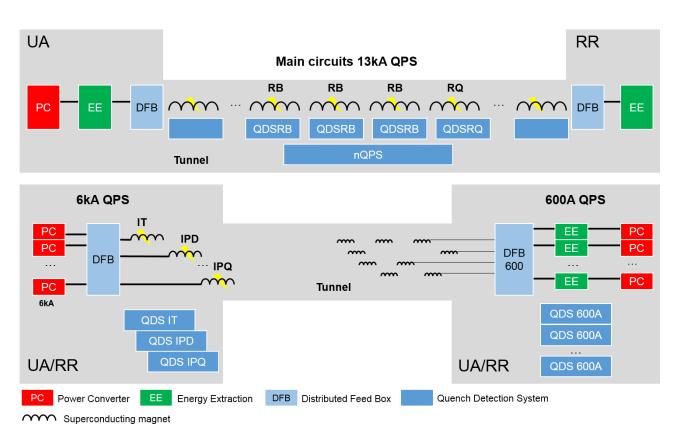


Quench Protection Systems

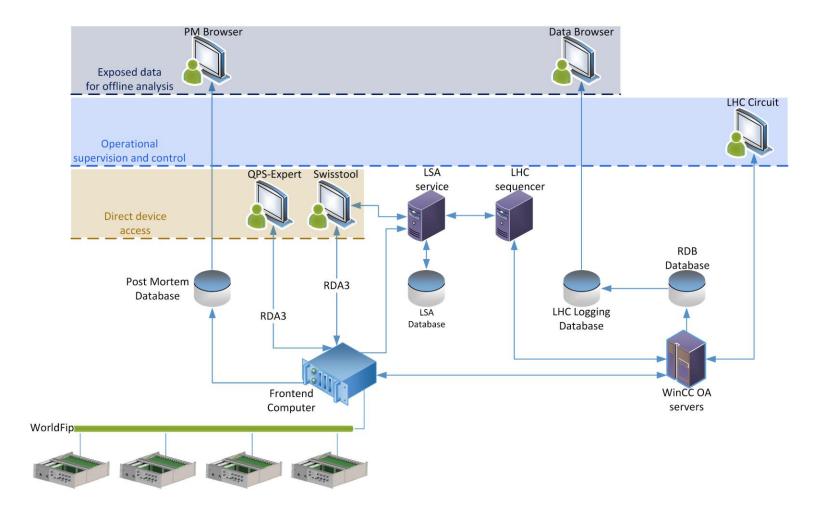
Jelena Spasic

TE-MPE-EP



Outline

- Introduction to Quench Protection Systems
- Planned changes in QPS for LS2
- Upgraded QPS closer look
 - QPS for main quadrupoles (MQ)
 - QPS for 11T dipole
 - QPS for individually powered magnets (IPx)
- Conclusions

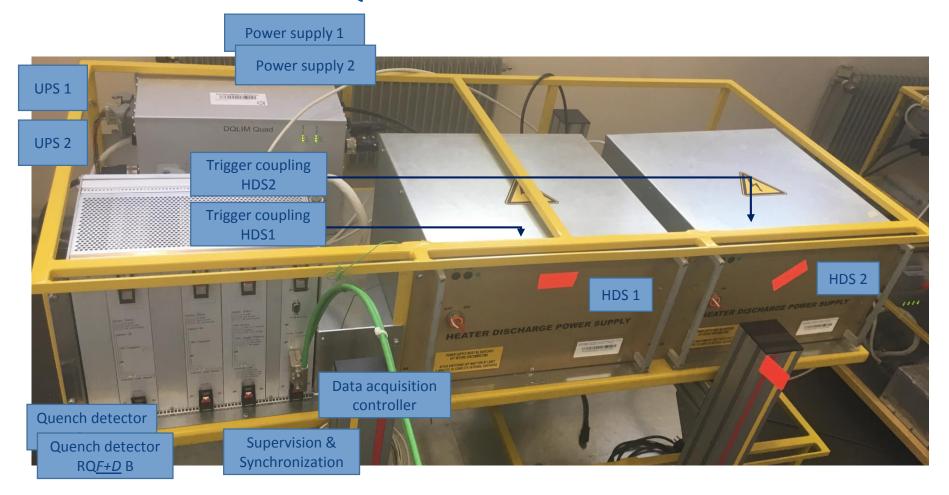

Introduction to Quench Protection Systems 1/2

Item	Count
EE13kA	32
EE600	202
HDS	6084
QDSRB	1232
Magnet detector	2464
QDSRQ	392
Magnet detector	1568
nQPS	436
Magnet detector	1632
Bus-bar detector	4096
QDSIPX	76
IP magnet detector	360
IT magnet detector	48
Current lead detector	1124
QDS600	114
Magnet detector	624
Rad-tol magnet det.	212
Current lead detector	1672
Total	8568
Interlocking	13800

Introduction to Quench Protection Systems 2/2

Planned Changes in QPS for LS2

- QPS for MQ (DYPQ)
 - Lifecycle management driven
 - Enhance diagnostics and remote maintenance
 - Improve reliability and radiation tolerance
- QPS for 11T
 - New quench protection system needed
- QPS for IPx (IPQ, 600A)
 - Reduce susceptibility to thunderstorms IPQ
 - Improve detection of symmetric quenches IPQ
 - Improve EMC of current sensors 600A
 - Maintenance, test and reduction of units EE 600A



Old DYPQ

New DYPQ

DYPQ Upgrade

Core Functions

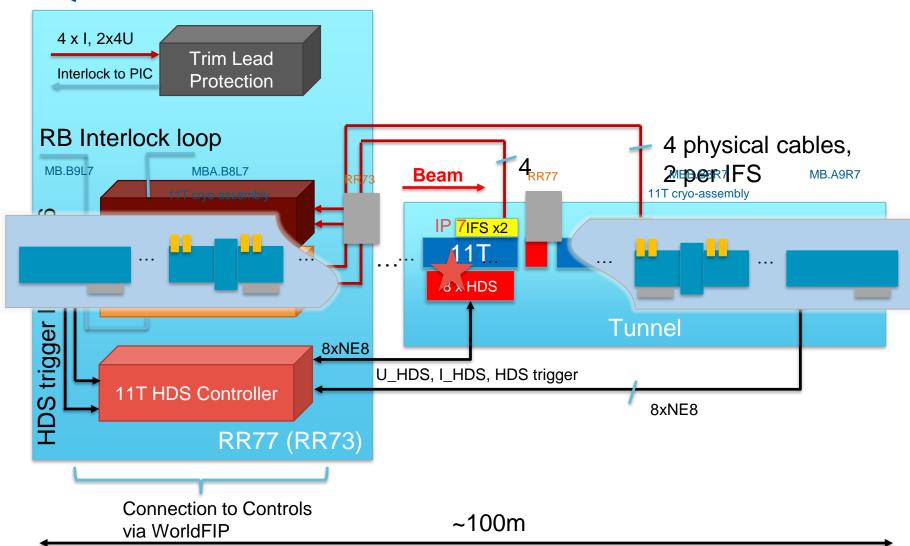
- Redundant powering on the UPS level
- Quench detection logic and signal filtering in digital domain
- Enhanced quench heater supervision
- Qualified in radiation
 - Components in PSI, device in CHARM radiation tolerant up to 300 Gy (with an exchange of data acquisition controller)

Enhanced Diagnostics

- · Quench heater trigger monitoring
- Interlock loop monitoring
- Power supply monitoring
- Enhanced PM timing precision
- Continuous configuration transmission

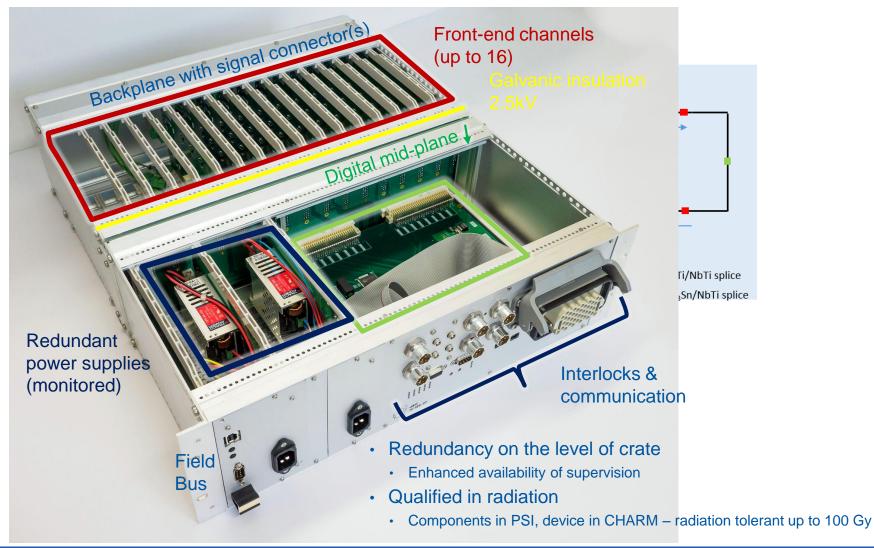
Enhanced Maintenance

- Remote power cycle
- Boards in metallic enclosures (cassettes)
- Tool-less exchange of the cassettes
- Dedicated LED indicators on the front panel allowing quick status assessment by Piquet

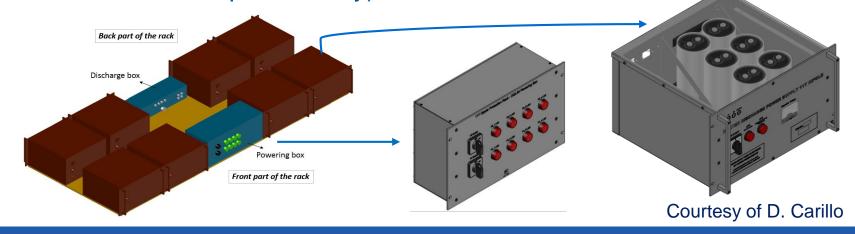


DYPQ Upgrade – Operational View

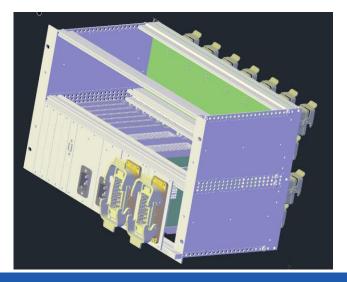
- Signals from redundant quench detectors sent at the same time
- System configuration continuously transmitted
- Larger number of signals transferred to the LHC controls
 - All power supplies provided by DQLIM are monitored
 - HDS trigger links are monitored for the first time in the LHC
 - HDS voltage and current are monitored
 - Interlock loop state is monitored
- Improved PM data timing
- Selectable PM analysis resolution
- Remote power cycle

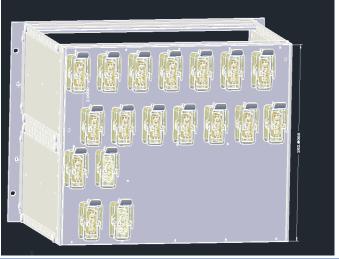

QPS for 11T

5/7/2019


Universal Quench Detection

HDS Rack


- DQHDS supplied by both F3 (UPS1) and F4 (UPS2)
- Switches on the front side to turn on/off the eight DQHDS
- For maintenance purposes, the current transformers installed inside the DQHDS
- New DQHDS has relays in the internal discharge circuit for safety
- New DQHDS has a voltage indicator
- Qualified in radiation (components in PSI, device in CHARM radiation tolerant up to 420 Gy)



11T HDS Controller

- Monitoring 16 quench heater voltages and 16 currents
- Trigger coupling of 2x16 HDS trigger lines from UQDS (fully passive, no fan-out required)
- HDS trigger monitoring
- Supervision of Heater-to-IFS box cable connection

Trim Lead Protection Unit

- The resistive leads of the 11T trim circuit require active protection
- Lead voltage will be measured redundantly (2x4 voltages)
- Short bas-bars connecting circuit to the magnet will be included in measurements
- Current sharing will be monitored and optionally interlocked (1x4 currents)
- Unit will be composed of existing quench detection boards (DQQDC & DQAMG) or UQDS will be used

Consolidation of QPS for IPQ

- Reduce susceptibility to thunderstorms
 - Separation of magnet and bus-bar protection
- Enhance detection of symmetric quenches
 - Use of current derivative sensors
 - New quench detection unit to interface current derivative sensors
- Improve quench heater supervision
 - Use existing DQHSU units (used for main dipoles)
- Improve remote maintenance
- Partial upgrade planned for LS2
 - According to priority list that is in preparation by MP3

Consolidation of QDS for 600A

- Improve EMC of current sensors
 - Exchange of current sensors in sensitive areas (RR)
 - Installation of redundant sensors to switch in case of faults
 - New sensor candidate showed very good noise performance and was qualified in irradiation testing campaign in PSI up to 420 Gy
- Improve ramp rate limits
 - Use of current derivative sensors for high-inductance circuits planned but not confirmed for beginning of Run 3
- General maintenance
 - Improve PM timing
 - Improve remote maintenance
 - Improve current sensor cabling (RR)

Consolidation of EE 600A

- General maintenance of 600A EE systems
 - Systems targeted according to closing failure rate
- Reduction of 600 A EE units in operation
 - Circuits with operational currents below 300 A to be by-passed
 - Changes in firmware required
 - Interlock configuration affected
- Four vacuum breaker-based systems will replace four electromechanical ones
 - Exact circuits to be decided
- Transparent for operation

Upgrade of QPS: Miscellaneous

- Partial replacement of obsolete detection boards by new generation QDS for ITs
- Fast quench loop controllers for S67 and S78
 - Fast (<1 ms) transmission of circuit abort signal to PIC –
 required to dump the beam prior to heater firing in 11 T dipoles
- Reconfiguration of the nQPS layer in S67 and S78 after
 11 T dipole installation
 - 11 T dipoles cannot serve as reference magnets for aperture symmetric quenches
- 13 kA EE systems
 - Consolidation and maintenance of 256 circuit breakers
 - Inspection and maintenance of dump resistors
 - Consolidation of controls

Upgrade of QPS Supervision & Control

- MasterFIP replaces WorldFip (test successful so far)
- Major software stack update
- NXCALS logging in cooperation with BE-ICS
- Refactoring of real time application
 - Data processing optimization
 - State machine controller
 - Automatic fault recovery
- Automatic analysis of state of health of the system
- Swisstool extension
- Supervision must be fully operational before QPS IST and LHC HWC!

Conclusions

- QPS for MQ will be upgraded due to approaching the end of the system lifetime, and as well to enhance diagnostics and remote maintenance
- QPS for 11T will be deployed to protect 11T magnet
- Partial consolidation of QPS for IPx circuits will be performed
- We do not expect any surprises in QPS due to operation at 7 TeV

Thank you for your attention!

