LSA and the Lumi Server

M. Hostettler on behalf of the LHC Software and the LSA Teams

with thanks to M. Di Castro, A. Masi, D. Mirarchi, S. Redaelli, J. Wenninger

outline

- LSA Settings protection
 - current (Run II) state
 - possible loopholes to close
- Lumi Server and beta* levelling
 - recap: how does it work
 - what we did in Run II (and MDs)
 - requirements for Run III

LSA settings protection

settings protection: the current situation

LSA method RBAC protection

- restricts settings changes to the CCC LHC island
 - prevent mis-manipulation behind the operators back
 - temporary "piquet" role to allow outside changes

protected

- trim
- generation
- change of resident context/hypercycle

critical settings (MCS)

- implemented in CMW/frontends
- restricts trims of "critical" settings to role-holders
- settings are digitally signed
- used for interlock limits
 - collimator limits
 - BLM limits and factors
 - SIS settings
 - etc.

settings protection: existing loopholes

- LSA actions not protected
 - creating, editing, deleting beam processes and types
 - editing incorporation rules
 - optics-related modifications
 - optics, twiss tables, elements
 - knob definitions and their factors
 - potential for hard-to-detect mishaps
- PCInterlock references are not critical settings
 - references are stored in the same parameters as PC settings
 - "reference beamprocess": just a regular beamprocess, cloned from the operational one
 - references are not (and can not be made) critical settings (MCS)
 - \circ $\,$ can be trimmed by anyone from the LHC CCC island

settings protection: closing loopholes

- LSA actions not protected
 - creating, editing, deleting beam processes and types
 - editing incorporation rules
 - optics-related modifications
 - optics, twiss tables, elements
 - knob definitions and their factors
 - potential for hard-to-detect mishaps

- add LSA method protection:
 - restrict to CCC LHC island
 - require personal operator/EIC login?

- PCInterlock references are not critical settings
 - references are stored in the same parameters as PC settings
 - "reference beamprocess": just a regular beamprocess, cloned from the operational one
 - references are not (and can not be made) critical settings (MCS)
 - \circ $\,$ can be trimmed by anyone from the LHC CCC island

settings protection: closing loopholes

- LSA actions not protected
 - creating, editing, deleting beam processes and types
 - editing incorporation rules
 - optics-related modifications
 - optics, twiss tables, elements
 - knob definitions and their factors

PCInterlock references are not critical settings

potential for hard-to-detect mishaps

add LSA method protection:

- restrict to CCC LHC island
- require personal operator/EIC login?

store as "reference settings" in LSA, and method-protect reference API

- references are stored in the same parameters as PC settings
 - "reference beamprocess": just a regular beamprocess, cloned from the operational one
 - references are not (and can not be made) critical settings (MCS)
- can be trimmed by anyone from the LHC CCC island

RBAC is (not) a security system

• RBAC is designed to protect against accidental mis-manipulations, not against malicious access

It is important to mention that RBAC is not a security system against hackers; it is designed only to prevent well meaning people from making the wrong setting

"Role-based Access Control for the Accelerator Control System at CERN", ICALEPCS'07

- **not** covered here:
 - LSA running in "2-tier" mode (direct DB access)
 - DB passwords in LSA client jars
 - some RBAC checks are client-side
 - ssh to LHC island console, then login by location
 - \circ etc.

beta* levelling and the lumi server

Michi Hostettler

beta* levelling & settings: a block diagram

CERN

lumi server trim "orchestration"

beta* levelling orchestration sequence

comparison: squeeze by the sequencer

▽ È SQUEEZE ATS TO 30CM 2018

- ENSURE START_SQUEEZE TABLE LOADED
- Incorporation into ats squeeze from end of Q change
- LOAD TCT SQUEEZE FUNCTIONS (PARAMETRIZED)
- COARSE SETTINGS TOTS FOR MDS
- LOAD REF ORBIT AND OPTICS FOR ATS SQUEEZE 2017
- DRIVE ATS SQUEEZE TO 30CM IN ONE STEP 2018
 - SET FEEDBACK BFSU PRO
 - SET SQUEEZE SEGMENT 0 -> 638
 - SET USER FOR REGENERATION AT END OF SQUEEZE
 - MAKE SQUEEZE USER RESIDENT
 - load optics table for pc interlock event
 - Set loadable optics to the OFB
 - ARM OFB REF ORBIT CHANGE
 - LOAD ADT FOR ATS CHANGES (PARAMETERIZED)
 - IOAD ATS SQUEEZE 2016 PC TABLES SEGMENT (PARAMETRIZED)
 - CHECK OFB AND QFB FEEDBACKS ON
 - CHECK OFB IS ARMED
 - MOVE STATE/BEAM_MODE = SQUEEZE
 - SEND START TBL (33) EVT
 - REGENERATE ACTUAL BP FOR THE STOP POINT
 - MAKE RESIDENT USER FOR STOP POINT
 - WAIT FOR ATS SQUEEZE SEGMENT TO FINISH

comparison: squeeze by the sequencer

☑ SQUEEZE ATS TO 30CM 2018

	0	ENSURE START_SQUEEZE TABLE LOADED
Þ		INCORPORATION INTO ATS SQUEEZE FROM END OF Q CHANGE
Þ		LOAD TCT SQUEEZE FUNCTIONS (PARAMETRIZED)
⊳		LOAD COARSE SETTINGS TCTS FOR MDS-
⊳		LOAD REF ORBIT AND OPTICS FOR ATS SQUEEZE 2017
∇		DRIVE ATS SQUEEZE TO 30CM IN ONE STEP 2018
		SET FEEDBACK BFSU PRO
		SET SQUEEZE SEGMENT 0 -> 638
		SET USER FOR REGENERATION AT END OF SQUEEZE
		MAKE SQUEEZE USER RESIDENT
		load optics table for pc interlock event
		Set loadable optics to the OFB
		ARM OFB REF ORBIT CHANGE
	⊳	LOAD ADT FOR ATS CHANGES (PARAMETERIZED)
	Þ	LOAD ATS SQUEEZE 2016 PC TABLES SEGMENT (PARAMETRIZED)
	⊳	CHECK OFB AND QFB FEEDBACKS ON
		CHECK OFB IS ARMED
	\triangleright	MOVE STATE/BEAM_MODE = SQUEEZE
		SEND START TBL (33) EVT
		REGENERATE ACTUAL BP FOR THE STOP POINT
		MAKE RESIDENT USER FOR STOP POINT
	Þ	THE WAIT FOR ATS SOUREZE SEGMENT TO FINISH

(CERN)

comparison: squeeze by the sequencer

machine protection during beta* levelling

- currents, OFB reference & collimator centres: calculated from orbit response
 - need dynamically calculated, measured reference orbit
 - in squeeze: some 10um of transients are OK
 - in collisions: 10um @ IP = 1 sigma separation
 - can not make other beam processes resident
 - would interfere with levelling and other activities
- safe envelope protected by external systems
 - collimator limits
 - PCInterlock (pre-programmed reference and limit functions)
 - orbit correctors
 - all quadrupoles including optics and MKD-TCT phase advance
- → The Lumi Server should not be critical for machine protection: a safe envelope is monitored and enforced by outside systems

beta* levelling in Run II - operationally

- anti-levelling late in fills
 - \circ 30cm \rightarrow 27cm
 - $\circ \quad 27 cm \rightarrow 25 cm$
- beams kept well in collision
- small transients on IP2/8
 - traced to "old" ref. orbit
 - mitigated by acquiring a fresh reference orbit
- collimators not moved
 - constant gap
 - minimal centre changes (collimators were moved during crossing angle levelling)

beta* levelling in Run II - MD results

2017 MD: demonstrated multiple levelling cycles between 40cm and 30cm beta*

beta* levelling in Run II - MD results II

2018 MD: colliding at 1m beta*, then squeeze to 30cm (and back again)

- moving collimators
 - \circ $\,$ centres: from orbit $\,$
 - gaps: pre-programmed
 - verified offline by
 Daniele: looked OK
- collimator limits opened/masked

See A. Calia at LSWG 2018-07-03 and analysis by D. Mirarchi for details.

beta* levelling in Run III - an outlook

- **simultaneous** crossing angle and beta* levelling proposed by Run III WG
 - motivated by reducing the radiation to triplets
 - \circ ~ levelling at 2 $10^{34}\,cm^{-2}\,s^{-1}$
- no issue for PCs, OFB
- collimator handling
 - constant gaps (in mm)
 - TCT centres to follow crossing angle (~100um per 10 urad)
 - collimator limits?

beta* levelling and collimator limits in Run III

- expected TCT center displacement in Run III: ~0.6mm
 - crossing angle range: ~165 $urad \rightarrow$ ~110urad
 - exact transfer to TCT is (slightly) optics dependent
- 2018 situation: ~0.3mm during crossing angle levelling
- collimator limits are critical settings (MCS)
 - signed functions stored in LSA
 - 1 single function for the whole squeeze range
 - can only be played as a whole

options for collimator limits in Run III

• use discrete limits

- provide a set of "open" limits to allow for centre changes
- 1-3 sets of limits
- need to validate that the limits are safe for the full beta*/crossing angle range
- supported today no hardware or software changes
- support arming partial limit functions
 - send the full signed function + range to arm to collimators
 - "cut" the function in the FESA class
 - would allow same functional limits as during regular squeeze
 - uncertain if feasible for collimation

An eventual modification during LS2 would imply a complete revalidation of a robust control system that has been successfully in operation for the previous 2 RUNs. (M. Di Castro)

- make position limits non-critical
 - could prepare/cut the limit functions in Lumi Server or dedicated service
 - machine protection implications ...

conclusions & outlook

conclusions & outlook

- LSA settings protection: good with a few loopholes
 - protection for context editing & optics related actions to be added
 - PCInterlock references to be protected
 - protect against accidental mis-manipulations, not against malice

- Lumi Server & beta* levelling
 - successfully demonstrated in 2018
 - combined beta* & crossing angle levelling proposed by Run III WG
 - OK for power converters, feedbacks, PCInterlock
 - constant TCT gaps, centres following crossing angle
 - handling of collimator limits to be defined

levelled IP stability, squeeze from 1m

• Levelled IPs stable within a few %

(CERN)