

CERN MPP Workshop 2019

LINAC4 experience and open points

D. Nisbet

Many thanks to C. Bracco, A. Lombardi, C. Martin, B. Mikulec, M. O'Neil, F. Roncarolo

8th May 2019

Introduction

- LINAC4 Machine Protection architecture
- LINAC4 Review
- Incidents and lessons learnt
- Machine Protection Status and Settings
- Incoming

LINAC4 Machine Protection architecture

8th May 2019

LINAC4 commissioning experience

- constantly evolving since 2013
- lengthy commissioning phase
- rigid protection environment \rightarrow flexible settings
- special machine phases
 - 3MeV and 12MeV testbench, injection chicane teststand, medical experiment, source+RFQ tests
- = challenging machine protection environment

LINAC4 Reviews

- Context
 - Two recent reviews with a focus on performance and availability
- Review June 2018 https://indico.cern.ch/event/735286/timetable/
 - Significant progress no show stoppers
 - Still many issues, functionality, operability: "beam quality a major worry"
- Review January 2019 <u>https://indico.cern.ch/event/778856/timetable</u>
 - "the autumn 2018 run solved many issues and improved beam quality"
 - Achieving steady 25mA; however now need 600us pulse length;
 - Stability requires progress on autopilot and source continuous caesiation
 - Further studies required on transmission through RFQ
 - Significant progress with RF controls, still need work on feedforward
 - Issues with steerers around 0A (cf transactional behaviour)
 - Instrumentation development for wire grids and laser emittance measurement
 - Longitudinal painting...

Naturally leads to...

The 12 Top Ingredients of the LBE Line Run

	LBE	Commissioning of TLs and LBE
	LBE	Validation of controls and timing changes
	LBE	New applications
	LBE	RF system optimised for 600 μs long pulses
	LBE	New motor controllers for WS; BSM2; new Semgrids
	LBE	Power supply changes (HW + SW + 600 μs FT)
		RF: evaluation of new feedback and feedforward algorithms
	LBE	Debuncher commissioning w/o and with beam loading
	LBE	Twiss parameter matching and dispersion
	LBE	Optimisation of transmission, minimisation of losses
	LBE	Energy ramping
15	LBE	Longitudinal painting

"from Open Days to Christmas 2019"

...so much to do, so little time...

Incidents and lessons learnt

#	Incident (year)	Energy, Down Time	Cause
1	Hole in bellows (2013)	3MeV, 4d	Misalignment and unusual beam setting found, aperture restriction in bellows https://indico.cern.ch/event/404834/contributions/962491/attachments/810974/1 111460/20150709_LINAC4_BIS_50MeV.pdf
2	Destroyed laser emittance meter diamond detector (2014)	12MeV, degraded data	By-Pass of the BIS on both pre-chopper and chopper → full beam on diamond https://indico.cern.ch/event/404834/contributions/962491/attachments/810974/1 111460/20150709_LINAC4_BIS_50MeV.pdf (slide 7-8)
3	SEM grid damaged (2017)	160MeV, degraded data	Either wrong operational limits defined or SIS failed or low energy beam on grids (no logging active) https://indico.cern.ch/event/735286/contributions/3032795/attachments/167452 5/2688200/TL4O_Reiew_26Jun18_BI_FR.pptx
4	Damaged foil in teststand (2018)	< 160MeV, one foil damaged	RF Cavity Tuning (from DTL to PIMS) caused showers on foil (when in OUT position) https://indico.cern.ch/event/735286/contributions/3032795/attachments/1 674525/2688200/TL4O_Reiew_26Jun18_BI_FR.pptx (slide 7)
5	BTV screen broken (2018)	160MeV, no BTV for foils	Equivalent of 4 PSB rings on screen (designed for 1 ring) <u>https://indico.cern.ch/event/778856/contributions/3253865/attachments/178690</u> <u>0/2909722/TL4O_Reiew_29Jan19_BI_FR.pptx</u> (slides 14-16)
6	Hole in bellows (2019)	3MeV, 2hr	Over-focusing and steering of the beam onto bellow before the dump, caused by an anomalous setting during automated parameter search to improve chopping efficiency
ICED			

LINAC4 experience and open points

Incidents and lessons learnt

#	Incident (year)	Energy	Lesson learnt
1	Hole in bellows (2013)	3MeV	Bellows are weak point (reinforce, remove aperture restriction); simulate abnormal settings; check machine alignment;
2	Destroyed laser emittance meter diamond detector (2014)	12MeV	Follow procedure for BIS masking;
5	SEM grid damaged (2017)	160MeV	Need to implement logging during commissioning phases! Reviewing thermomechanical simulations to set operational limits; New design in pipeline;
3	Damaged foil in teststand (2018)	160MeV	Unique for teststand. Empty foil in first frame. Extra care when setting up with high intensity. Implement BLM monitoring?
4	BTV screen broken (2018)	160MeV	BTV movement and presence included in SIS.
6	Hole in bellows (2019)	3MeV	Experienced supervision required when making special tests; Worth exploring further protection options

Observations

- Care needed even at low energy!
- All incidents during special (MD-like) measurements

Machine Protection Settings Status

- All installed systems for L4T running are in an (almost) definitive state with the exception of the settings for the following equipment:
- Power converters
 - Flexibility demanded for setting up and investigations
 - For LBE run the analog fixed thresholds (expert setting) will be changed to remote digital thresholds (OP setting)
- BCT Watchdog and BLM
 - Both have similar strategy with a ppm software threshold
 - Non-ppm hardware threshold
 - Operator settings for WD; no settings yet for BLMs...
- SIS

BCT–Watch Dog BR_X – L4T, Sum(BR_X-L4T) : L4 Connection

BLM system status

- The electronics (HW and SW) have been upgraded several times to match OP needs
 - Important change was adding a timing reconfiguration to synchronise with Beam Presence.
- The connectivity with the BIS is ready "only" settings required
 - New OP application will be used to empirically acquire settings for LBE run
 - The SW Thresholds functionality was verified with beam in 2018
 - The HW Thresholds functionality only verified in the lab. Still needs DB (InCA) for storing the thresholds and the 'drive' to electronics functions.

8th May 2019

SIS and External Conditions

- External Condition:
 - [INCOMING] Change beam destination to L4Z if beam stopper L4T.TDISA.0740 is IN
- SIS:
 - [DONE] Shorten the Linac4 pulse length to the equivalent of one ring injection for: wire scanners, Semgrids, BTV screen
 - [DONE] Cut the beam when the BTV screen is moving
 - [INCOMING] Automatic entry in the elogbook + LASER and a sound alarm after a certain number of shots without beam
 - [INCOMING] Limit the average power sent to the LBE dump to allow access to PSB during LBE line run (use BCT acquisition and define a threshold in average current over a certain time)
 - [INCOMING] For 'continuous' caesiation, monitor the temperature of the caesium oven and close the vacuum valve if too high

Machine Protection Settings

- A recurring theme throughout the extended commissioning phase is settings flexibility
 - Necessary for machine studies and performance improvement
 - However evidently creates an operational risk
- Several important machine protection settings are assured by experienced supervision and operation
 - the same supervisors are often probing the performance boundaries
- How to ensure settings are correct and reverted to nominal?
 - Technical solution: consider deploying Machine Critical Settings
 - Human solution: roles and rules to be respected
- The MPP has a clear mandate for the LHC
 - In the LIU era a proactive "Injectors MPP" and "Injectors Threshold WG" would provide a good framework for injector machine protection.
 - LINAC4 experience shows this is most useful during the commissioning phase

Incoming – Source interlocking

- Request from ABP and OP to move BIS actuating system from Source_RF to Source_HV
- Discussed during 1st LINAC4 review (June 2018) (<u>https://indico.cern.ch/event/735286/timetable/#12-power-converters-and-interl</u>)
 - Concluded that any change should be synchronised with eventual source update to magnetron
 - However since this review the magnetron solution is not actively considered, thus for the moment continue interlocking with Source RF
 - Mitigated by manual intervention to close beam-stopper if LINAC beam is inhibited
 - Observe that the Beam Stopper must be operational... a (low probability) fault in this system will induce a long recovery time
- Monitor situation and consider implementation post-LS2
 - Affected teams principally EPC (Source_HV) and MPE (BIS)

Incoming – Restart and Machine Protection

- Main phases
 - Phase 1: BIS connectivity (MPE)
 - Phase 2: BIS user connectivity (MPE + equip groups)
 - Phase 3: non-beam functionality (OP)
 - Phase 4: beam functionality (OP)
- Commission LBE
 - 1 BIC + 10 new users
- Commission PSB connection
 - For LINAC4, add PSB BICs x4 and PSB destination to 52 existing users
 - Then need to commission the other 45 PSB users...

Incoming – source caesiation

- Current method of periodic caesiation.
 - RFQ is protected with the sector valve closed during the process.
 - Once per month, process takes approximately 4-5 hours.
 - High temperature (typ. 140-170°C) to deliver relatively high quantity of caesium (5 mg).
 - Disadvantage is that source electron to ion ratio evolves over time as the caesium is consumed and required very regular tuning.

Incoming – source caesiation

• Proposed new method of continuous caesiation.

- RFQ sector valve is always open, protection against Cs-overflow achieved by keeping temperature at or below nominal.
 - Low temperature (possibly 60-100°C) where delivery of caesium matches consumption.
 - Similar caesiation methods used at other labs: J-PARC (hourly high temp. micro caesiation) and BNL (constant caesiation @100 °C).
 - Advantage with a cusp free plasma generator is that the source remains stable over time (e/H < 1); tested in 2018 in Linac4.
 - Further study of this mode of operation was recommended by L4 source review of Nov. 2018 (EDMS 2048831 page 5).

Incoming – source caesiation

Proposed new method of continuous caesiation.

- RFQ sector valve is always open so caesium reservoir must be kept at a low operation temperature that is deemed safe (temperature still to be determined)
- PLC control of heaters and Cs valve to prevent high temperature with sector valve open
- Review machine protection aspects during Summer 2019
- Objective is to use this method for the LBE run (starting September 2019)

Conclusion

- LINAC4 is extensively exploiting the LHC BIS components
 - Usual compromise between machine flexibility and machine protection during the long performance exploration phase
 - Machine protection strongly dependent on supervision expertise
 - The need for deployment phases and commissioning scenarios should be carefully considered when designing new BIS implementations
- The few incidents that have occurred suggest some improvements are possible particularly with a decision making protocol
 - More formality required when deviating from 'standard' operating envelope? Clarify roles and procedures?
 - Consider a rigorous approach to machine protection settings, such as defining Machine Critical Settings (WD, PC, BLM, ...)
- Incoming
 - Moving to full exploitation of LINAC4 (LBE run then PSB connection)
 - Review the machine protection aspects of continuous source caesiation

www.cern.ch