Craig Brown Brunel University 17 April 2019

Quick Update on IH2

- Updated plot for systems Performance paper to Root Style
- Use ‘averaging’ as suggested previously
- Trying to find balance between overcrowding plot and simplicity

Problem: Sensors Uncalibrated

Calibrate without magnetic field effects

Calibration Procedure

- Manage the data into equal sized intervals

$$
\begin{gathered}
T_{\text {average }}=\frac{T_{\text {previous }} \Delta t_{\text {first }}+\sum_{i} T_{i} \Delta t_{i}+T_{\text {last }} \Delta t_{\text {last }}}{t_{\text {interval }}} \\
t_{\text {interval }}=\Delta t_{\text {first }}+\sum_{i} \Delta t_{i}+\Delta t_{\text {last }}
\end{gathered}
$$

- Apply Calibration

$$
T_{\text {corrected }}=\frac{T_{\text {reading }}+c_{\text {cut-off }}-c_{\text {magnet }} I}{c_{\text {Temperature }}}
$$

After Calibration

Temperature sensors vs boiling temperature during heating

Root Style

Liquid Hydrogen Temperature during liquefaction and steady-state

Alterations

- Change to Root Style, add Time
- Add Error Bars
- Too crowded for individual sensors
- => Take Average
- Lose Filling and Emptying detail
- => Only use during steady-state, but miss out on sensitivity we do see, also emphasises limitation of calibration procedure

Liquid Hydrogen Temperature during liquefaction and steady-state

Liquid Hydrogen Temperature during steady-state

Errors included

- Error calculation from code

```
resolution = 0.1
Pressure_sensor = 0.014
Sensor_accuracy = 0.009
Sensor_stability = 0.012
Sensor_magnetic = 0.008
Cal_Temp = 20.0
Boil_Temp = 21.692
No_sensors = 8.0
```

```
other_error = ((No_sensors * (((((resolution/Cal_Temp) ** 2.0 + (Pressure_sensor/Boil_Temp) ** 2.0 +
(((2 * (resolution ** 2.0)) ** 0.5)/Cal_Temp) ** 2.0) ** 0.5) * Cal_Temp) **2.0 + (Sensor_magnetic) **
2.0 + (Sensor_stability) ** 2.0 + (Sensōr_accuracy) ** 2.0)) ** 0.5)/No_sensors
phase_error.append((()np.std([phase_vector[0], phase_vector[1], phase_vector[2], phase_vector[3], phase_vector[4], phase_vector[5], phase_vector[6], phase_vector[7]]))/No_sensors) ** 2.0 + other_error ** 2.0) ** 0.5)
```


Issues

- Can average be taken during steady-state or are sensors independent
- Pressure accuracy may be overestimated, need to check difference in pressure above and below vessel again
- Estimate magnetic error (different from manufacturer)

Wedge Update

- Little Progress since CM
- Looked at difference between my results and Tanaz's
- Looked at Francois' KNN as similar
- Order agrees with Francois LiH analysis, but not Tanaz's
- Perhaps Tanaz's uses further processing, trying to understand discrepancy

The END

(9\%) Contour density evolution (kNN)
 $6-\mathrm{mm} 140-\mathrm{MeV} / \mathrm{c}$ beam - LiH - flip

Figure 4: Evolution of the core phase-space density for the $6-140$ beam setting.

IPAC plot?

$2.4 \frac{1 \mathrm{e} 3}{}$
2.
-

- 2.2

2.

1.8 •

ह
1.6
1.4

0
8
6
1.4
:or
Simulation- MAUS $\mathrm{v-3.0.0}$ on
$\Delta d=-14.5 \%$

