Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H

Hot Axions and the H_0 tension

Alessio Notari 1

Universitat de Barcelona

talk @ Benasque, Light Scalars, 2019.

¹In collaboration with R.Z. Ferreira, F. D'Eramo, J.L. Bernal. Work in progress with L.Merlo, F. Arias-Aragon.

Axions as Hot Relics The QCD Axion (a) is a very light particle that

Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_a = rac{lpha_{\mathcal{S}}}{8\pi} rac{a}{f} G_{\mu
u} ilde{G}^{\mu
u}$$

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H_0

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

The QCD Axion (a) is a very light particle that

Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = rac{lpha_{\mathcal{S}}}{8\pi} rac{a}{f} G_{\mu
u} \tilde{G}^{\mu
u}$$

- Integrating by parts: $\mathcal{L}_a = \frac{\alpha_s}{8\pi} \frac{\partial_\mu a}{f} K^\mu$,
 - \implies continuous shift symmetry $a \rightarrow a + c$

Axions as Hot Relics

The QCD Axion (a) is a very light particle that

Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a}=rac{lpha_{\mathcal{S}}}{8\pi}rac{a}{f}G_{\mu
u} ilde{G}^{\mu
u}$$

Gluons Axion via

The QCD

Axion

Axion/ALPs

via Leptons

The H₀

- Integrating by parts: $\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$,
 - \implies continuous shift symmetry $a \rightarrow a + c$
- But: boundary term sensitive to QCD Instantons,
 - Induces a potential $V(a) \approx \Lambda_{QCD}^4 \cos(a/f)$;
 - ② ⇒ Drives ♀ to zero
 - 3 \implies Axion mass $m_a \approx \frac{\Lambda_{QCD}^2}{f}$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The *H*₀ tension

The QCD Axion (a) is a very light particle that

Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- Integrating by parts: $\mathcal{L}_a = \frac{\alpha_s}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$,
 - \implies continuous shift symmetry $a \rightarrow a + c$
- But: boundary term sensitive to QCD Instantons,
 - Induces a potential $V(a) \approx \Lambda_{QCD}^4 \cos(a/f)$;
 - ② ⇒ Drives CP to zero
 - 3 \implies Axion mass $m_a \approx \frac{\Lambda_{QCD}^2}{f}$
- Bounds on $f \Leftrightarrow$ bounds on m_a

Axion: constraints

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The *H*₀ tension

 $^{11}10^{\cdot 10}10^{\cdot 9}\ 10^{\cdot 8}\ 10^{\cdot 7}\ 10^{\cdot 6}\ 10^{\cdot 5}\ 10^{\cdot 4}\ 10^{\cdot 3}\ 10^{\cdot 2}\ 10^{\cdot 1}\ 10^{0}\ 10^{1}\ 10^{2}\ 10^{3}\ 10^{4}\ 10^{5}\ 10^{6}$ Axion Mass m_A (eV)

Axion: constraints

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion vi Quarks

Axion/ALPs via Leptons

The *H*₀ tension

• Caveat: Constraints based on couplings with e, γ , nucleons... Expected $\mathcal{O}(1/f)$, but model dependent.

Axion: constraints

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The *H*₀ tension

- Caveat: Constraints based on couplings with e, γ , nucleons... Expected $\mathcal{O}(1/f)$, but model dependent.
- Small $m_a \ll \mathcal{O}(eV) \implies$ acts as Radiation, visible in CMB (Cosmic Axion Background)

QCD Axion

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via

Axion/ALPs

The Ho

Axions:

- Couple with continuous shift symmetry with all SM
- Only breaking: Instanton-induced (tiny) mass

QCD Axion

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via

Axion/ALPs

via Leptons

Axions:

- Couple with continuous shift symmetry with all SM
- Only breaking: Instanton-induced (tiny) mass

Terminology:

- If it couples to $G\tilde{G} \Longrightarrow$ "QCD Axion"
- ② If not: ⇒ Axion-Like Particle ("ALP")

Axions as Hot Relics

• Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

Axions via Gluons

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

via Leptons

• Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

 \bullet Can be produced at high T and decouples at T \lesssim T_{DEC}

→ hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

via Leptons The *H*o • Due to $\frac{\alpha_s}{8\pi} \frac{2}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

• Can be produced at high T and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_{s} \equiv \langle \sigma v
angle \cdot n_{g}^{EQ} = \left(rac{lpha_{s}}{2\pi f}
ight)^{2} g_{s}^{2} \cdot T^{3}$$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

via Leptons

• Due to $\frac{\alpha_s}{8\pi} \frac{2}{7} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

• Can be produced at high T and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_s \equiv \langle \sigma v \rangle \cdot n_g^{EQ} = \left(\frac{\alpha_s}{2\pi f} \right)^2 g_s^2 \cdot T^3 \text{ vs. } H \approx \frac{T^2}{M_{Pl}}.$$

QCD Axion produced via gluons

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The *H*₀ tension

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_{\mathcal{S}} = \left(rac{lpha_{\mathcal{S}}}{2\pi f}
ight)^2 g_{\mathcal{S}}^2 T^3 \ ext{vs.} \ H pprox rac{T^2}{M_{Pl}}.$$

QCD Axion produced via gluons

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

via Leptons

The *H*₀ tension

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_{\mathcal{S}} = \left(rac{lpha_{\mathcal{S}}}{2\pi f}
ight)^2 g_{\mathcal{S}}^2 T^3 ext{ vs. } H pprox rac{T^2}{M_{Pl}}.$$

• At $T > T_{DEC} \equiv$ thermal equilibrium

QCD Axion produced via gluons

Axions as Hot Relics

Axions via Gluons

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_{s}=\left(rac{lpha_{s}}{2\pi f}
ight)^{2}g_{s}^{2}T^{3}$$
 vs. $Hpproxrac{T^{2}}{M_{Pl}}$.

- At $T > T_{DFC} \equiv$ thermal equilibrium
- Example:

1
$$f = 10^9 GeV \implies T_{DEC} \approx 10 TeV$$

2 $f = 10^{10} GeV \implies T_{DEC} \approx 10^4 TeV$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H₀

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - ② Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

via Leptons

If a particle:

- Was in equilibrium at $T > T_{DEC}$
- 2 Decouples at some $T \lesssim T_{DEC}$
- Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if $m \ll \mathcal{O}(0.1 \sim 1 eV)$)
 - ⇒ Observable by CMB (and BBN)

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if $m \ll \mathcal{O}(0.1 \sim 1 eV)$) \implies Observable by CMB (and BBN)
- Traditionally parameterized by effective neutrino number

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via

Axion/ALPs via Leptons

The H₀

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if $m \ll \mathcal{O}(0.1 \sim 1 eV)$) \implies Observable by CMB (and BBN)
- Traditionally parameterized by effective neutrino number
- $N_{\text{eff}} = 3.046 + \Delta N_{\text{eff}}$

$$lacktriangledown \Delta extit{N}_{ extit{eff}} pprox rac{13.6}{g_{*, extit{DEC}}^{4/3}}^{*}$$

$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

The QCE

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H

• Abundance $\triangle N_{eff}$ diluted if total number of relativistic species in the plasma $g_{*,DEC}$ is large

$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The *H*₀ tension

• Abundance $\triangle N_{eff}$ diluted if total number of relativistic species in the plasma $g_{*,DEC}$ is large

$$ullet$$
 $\Delta N_{eff} pprox rac{13.6}{g_{*,DEC}^{4/3}}$

$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀ tension

• Abundance ΔN_{eff} diluted if total number of relativistic species in the plasma $g_{*,DEC}$ is large

- ullet $\Delta N_{eff}pprox rac{13.6}{g_{*,DEC}^{4/3}}$
- If $T_{DEC}\gg$ 100 GeV, $\Longrightarrow g_{*,DEC}\geq$ 106.75
- $\Rightarrow \Delta N_{eff} \lesssim 0.027$ (only upper bound!) (maybe detectable by CMB-Stage 4 experiments)

Axions as Hot Relics

The QCE Axion

Axions via

Axion via Quarks

Axion/ALPs

via Leptons

• If $f \lesssim 10^9 - 10^{10}$ GeV dominant channels can be via quarks & leptons $^2 \implies T_{DEC} \le$ Electroweak scale

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

• If $f \lesssim 10^9$ -10¹⁰ GeV dominant channels can be via quarks & leptons $^2 \implies T_{DEC} \le$ Electroweak scale

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

• If $f \lesssim 10^9$ -10¹⁰ GeV dominant channels can be via quarks & leptons $^2 \implies T_{DEC} \le$ Electroweak scale

ADVANTAGES:

- $lacktriangledown g^{SM}_*$ is smaller \Longrightarrow larger N_{eff}
- 2 Here we are confident on $g_*^{SM} \implies \text{Precise predictions}$
- 3 Lower $f \implies$ more accessible by direct searches (CAST, IAXO)

²A.N. & R.Z.Ferreira, PRL 2018; D'Eramo, Ferreira, A.N., Bernal JCAP 2018.

Axions as Hot Relics

The QCD

Axions via

Axion via Quarks

Axion/ALPs

The H_0 tension

If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} ,$$

Axions as Hot Relics If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

Axion

Axion via

Quarks

via Leptons

The H_0 tension

Axions as Hot Relics If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

- The QCD
- Axions via Gluons
- Axion via Quarks

Axion/ALPs via Leptons

The H

Axions as Hot Relics

Axion via Quarks

If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- Indeed:
 - This coupling can be rotated away $q o e^{i \frac{c_i a}{t} \gamma^5} q$
 - But it reappears in the mass term $m_{\alpha}e^{i\frac{c_ia}{f}}\bar{q}q$

Axions as Hot Relics

The QCD

Axions via

Axion via Quarks

Axion/ALPs

via Leptons The *H*o If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- Indeed:
 - This coupling can be rotated away $q o e^{j \frac{c_i a}{t} \gamma^5} q$
 - But it reappears in the mass term $m_q e^{i\frac{c_i a}{f}} \bar{q}q$

$$\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T$$

Axions as Hot Relics

Axion via Quarks If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} ,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- Indeed:
 - This coupling can be rotated away $q o e^{j \frac{c_i a}{t} \gamma^5} q$
 - But it reappears in the mass term $m_q e^{i\frac{c_i a}{f}} \bar{q}q$

$$\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_a^2 T \cdot e^{-\frac{m_q}{T}}$$

Axions as Hot

If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- Indeed:
 - This coupling can be rotated away $q o e^{i \frac{c_i a}{t} \gamma^5} q$
 - But it reappears in the mass term $m_a e^{i\frac{c_i a}{f}} \bar{q}q$

$$\Gamma_{s}=\left(rac{c_{i}}{f}
ight)^{2}g_{s}^{2}m_{q}^{2}T\cdot e^{-rac{m_{q}}{T}}$$
 vs. $Hpproxrac{T^{2}}{M_{Pl}}$

Axion via Quarks

Axions as Hot Relics • Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

$$\Gamma_s = \left(rac{c_i}{f}
ight)^2 g_s^2 m_q^2 T \cdot e^{-rac{m_q}{T}} ext{ vs. } H pprox rac{T^2}{M_{Pl}}.$$

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H₀

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics • Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

$$\Gamma_s = \left(rac{c_i}{f}
ight)^2 g_s^2 m_q^2 T \cdot e^{-rac{m_q}{T}} ext{ vs. } H pprox rac{T^2}{M_{Pl}}.$$

• Ratio peaks at $T \approx m_q$

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

$$\Gamma_s = \left(rac{c_i}{f}
ight)^2 g_s^2 m_q^2 T \cdot e^{-rac{m_q}{T}} \ ext{vs.} \ H pprox rac{T^2}{M_{Pl}}.$$

- Ratio peaks at $T \approx m_q$
- Axions/ALPs produced dominantly via quarks

$$1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$$

• Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$

The QCD

Gluons Via

Axion via Quarks

Axion/ALPs via Leptons

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics

Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

via Leptons
The Ho

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

$$\Gamma_s = \left(rac{c_i}{f}
ight)^2 g_s^2 m_q^2 T \cdot e^{-rac{m_q}{T}} \ ext{vs.} \ H pprox rac{T^2}{M_{Pl}}.$$

- Ratio peaks at $T \approx m_q$
- Axions/ALPs produced dominantly via quarks

$$1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$$

- Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$
- Tension with SN bounds (for QCD Axion, $c_i = 1$)
- Interesting for direct detection (e.g. IAXO), $m_a \approx 10^{-1} \sim 10^{-3} eV$.

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics

The QCD

Axions via Gluons

Axion via Quarks

Axion/ALPs

via Leptons

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

$$\Gamma_s = \left(rac{c_i}{f}
ight)^2 g_s^2 m_q^2 T \cdot e^{-rac{m_q}{T}} \text{ vs. } H pprox rac{T^2}{M_{Pl}}.$$

- Ratio peaks at $T \approx m_q$
- Axions/ALPs produced dominantly via quarks

$$1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$$

- Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$
- Tension with SN bounds (for QCD Axion, $c_i = 1$)
- Interesting for direct detection (e.g. IAXO), $m_a \approx 10^{-1} \sim 10^{-3} eV$, (+ Hints from stellar cooling)

³ R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through N_{eff}

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H

ullet $g_{*,DEC}$ is smaller at $1~{
m GeV} \lesssim T \lesssim 100 {
m GeV}$

 Prediction: larger N_{eff} ≤ 0.05 – 0.06 (*Not just upper bound!*)

QCD Axion through N_{eff}

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

via Leptons

- $g_{*,DEC}$ is smaller at $1~{
 m GeV} \lesssim T \lesssim 100{
 m GeV}$
- Prediction: larger N_{eff} ≤ 0.05 0.06 (*Not just upper bound!*)
- Solving Boltzmann equations for n_a:

Interplay with IAXO

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The Ho

Figure: Physics potential of the International Axion Observatory (IAXO)

$$10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}$$

$$5 \times 10^{-3} \text{eV} \gtrsim m_a \gtrsim 0.5 \text{eV}$$

 $(c_i = 1, \text{ for QCD Axion})$

Hot Axions via Leptons

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H_0

- The same can be done with leptons (μ and τ) ⁴
- a-electron uninteresting (strongly constrained)

Hot Axions via Leptons

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- The same can be done with leptons (μ and τ) ⁴
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

$$\mathcal{L}_{a-\ell} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i} \,,$$

Hot Axions via Leptons

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- The same can be done with leptons (μ and τ) ⁴
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

$$\mathcal{L}_{a-\ell} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i} \,,$$

- Slightly smaller f/c_{ℓ}
- Ratio peaks at $T \approx m_{\ell} \implies \text{Larger } N_{\text{eff}}$

Hot Axions via Lepton Scatterings

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- Smaller $f/c_i \lesssim \text{few} \cdot 10^7 \text{ GeV}$
- Ratio peaks at $T \approx m_{\ell} \implies \text{Larger } N_{\text{eff}}$

Hot Axions via Lepton Decays

Axions as Hot Relics

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{\textbf{a}-\ell} = \partial_{\mu}\textbf{a} \sum_{\ell \neq \ell'} \bar{\ell'} \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \text{h.c.} \; , \label{eq:lambda}$$

• Decays $\tau \to \mu + a$, $\tau \to e + a$

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

Hot Axions via Lepton Decays

Axions as Hot Relics

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{\textbf{a}-\ell} = \partial_{\mu}\textbf{a} \sum_{\ell \neq \ell'} \bar{\ell}' \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \text{h.c.} \; , \label{eq:lambda}$$

Decays $\tau \to \mu + a$, $\tau \to e + a$

$$\mathcal{L}_{a-\ell} = \partial_{\mu} a \sum_{\ell \neq \ell'} \bar{\ell}' \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^{5} \right) \ell + \text{h.c.} ,$$

scattering

0.50 Axion/ALPs via Leptons 0.10 V 0.05

$$(C_{\ell\ell'} \equiv \sqrt{\mathcal{V}_{\ell'\ell}^2 + \mathcal{A}_{\ell'\ell}^2})^{2\sigma, \, \text{CMB-S4}}$$

Hot Axions via Lepton Decays

Axions as Hot Relics

Axion/ALPs via Leptons

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{\textbf{a}-\ell} = \partial_{\mu}\textbf{a} \sum_{\ell \neq \ell'} \bar{\ell}' \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \text{h.c.} \; , \label{eq:lambda}$$

• Decays $\tau \to \mu + a$, $\tau \to e + a$

More efficient than scatterings (larger f/c)

Hot Axions via quark Decays

Axions as Hot Relics

• a-quarks interaction can be flavor non-diagonal

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H₀

Hot Axions via quark Decays

Axions as Hot Relics

The QCD

Axions via Gluons

Quarks

Axion/ALPs via Leptons

The *H*₀ tension

• a-quarks interaction can be flavor non-diagonal

Figure: Preliminary.

- More efficient than scatterings (larger $f/c \lesssim 10^{10}$ GeV)
- Survives better SN bounds for QCD Axion (with $c_i = 1$)

H₀ tension

Axions as Hot Relics

Planck CMB data (2015 and recent 2018)

Axion

Axions via

Quarks

via Leptons

The H₀ tension

 Measured H₀ in tension with direct local measurements from SN ⁵

⁵Planck 2018 results. VI. Cosmological parameters. Bernal, Verde & Riess JCAP 2016. Riess et al. Astrophys. J., 2018.

H_0 tension

Axions as Hot Relics

Planck CMB data (2015 and recent 2018)

• Measured H_0 in tension with direct local measurements from SN 5

The Ho

tension

•
$$H_0 = 67.27 \pm 0.60 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (CMB)}$$

•
$$H_0 = 73.52 \pm 1.62 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (SN)}$$

• Tension at 3.5σ (3.46 σ including BAO)

⁵Planck 2018 results. VI. Cosmological parameters. Bernal, Verde & Riess JCAP 2016. Riess et al. Astrophys. J., 2018.

H₀ tension

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- Planck CMB data (2015 and recent 2018)
- Measured H₀ in tension with direct local measurements from SN ⁵

- $H_0 = 67.27 \pm 0.60 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (CMB)}$
- \bullet $H_0 = 73.52 \pm 1.62 \ km \ s^{-1} \ Mpc^{-1} \ (SN)$
- Tension at 3.5σ (3.46 σ including BAO)
- Recently (Riess et al. 2019) claim: $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (SN)} \implies 4.4\sigma(!)$

⁵Planck 2018 results. VI. Cosmological parameters. Bernal, Verde & Riess JCAP 2016. Riess et al. Astrophys. J., 2018.

H₀ vs N_{eff}

Axions as Hot Relics

The QCI Axion

Axions via

Axion via

Axion/ALPs

The H_0 tension

• It is known that $\Delta N_{eff} > 0$ correlates with a higher Hubble constant H_0 from CMB

The QCD

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H_0 tension

• It is known that $\Delta N_{eff} > 0$ correlates with a higher Hubble constant H_0 from CMB

H_0 vs N_{eff}

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H_0 tension

• It is known that $\Delta N_{eff} > 0$ correlates with a higher Hubble constant H_0 from CMB

- Flat prior on $\log(f/c_i) \implies$ some prior dependence
- ALPs from μ scatterings can significantly increase H_0

Hot axions and H_0 tension

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs

The H_0 tension

• Tension remains, but can be alleviated to $3.6\sigma \rightarrow 3\sigma$

Model	Coupling	Prior $(f/c)_{max}$ [GeV]	$H_0 [\text{km s}^{-1} \text{Mpc}^{-1}]$	Tension (σ)
ΛCDM+Δ <i>N</i> _{eff}	μ scattering	3×10^{7}	$68.0^{+0.8}_{-0.7}(^{+2.3}_{-1.1})$	3.06 (2.75*)
		10 ¹¹	67.8 ^{+0.6} _{-0.5} (^{+1.4} _{-1.1})	3.36
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.2}_{-1.0})$	3.38
	au decay	$6.3 \times 10^{7} \text{GeV}$	68.1 ^{+0.6} _{-0.5} (^{+1.2} _{-1.0})	3.18
		10 ¹¹	$67.8^{+0.6}_{-0.5}(^{+1.2}_{-0.9})$	3.35
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.1}_{-0.9})$	3.39
	au scattering	5 × 10 ⁸	$68.0^{+0.5}_{-0.5}(^{+1.0}_{-1.0})$	3.25
		10 ¹¹	$67.8^{+0.5}_{-0.5}(^{+1.1}_{-1.0})$	3.33
		10 ¹⁸	$67.7^{+0.5}_{-0.5}(^{+1.1}_{-0.9})$	3.39
	Flat prior on N _{eff}	-	$68.3^{+0.8}_{-0.7}(^{+1.8}_{-1.2})$	2.93
ΛCDM	No coupling	-	$67.7^{+0.5}_{-0.4}(^{+0.9}_{-0.9})$	3.46

Hot axions and H_0 tension

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

The H_0

• Tension remains, but can be alleviated to $3.6\sigma \rightarrow 3\sigma$

Model	Coupling	Prior $(f/c)_{max}$ [GeV]	$H_0 [{\rm km s^{-1} Mpc^{-1}}]$	Tension (σ)
ΛCDM+Δ <i>N</i> _{eff}	μ scattering	3×10^{7}	$68.0^{+0.8}_{-0.7}(^{+2.3}_{-1.1})$	3.06 (2.75*)
		10 ¹¹	$67.8^{+0.6}_{-0.5}(^{+1.4}_{-1.1})$	3.36
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.2}_{-1.0})$	3.38
	au decay	$6.3 \times 10^{7} \text{GeV}$	68.1 ^{+0.6} _{-0.5} (^{+1.2} _{-1.0})	3.18
		10 ¹¹	$67.8^{+0.6}_{-0.5}(^{+1.2}_{-0.9})$	3.35
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.1}_{-0.9})$	3.39
	au scattering	5 × 10 ⁸	$68.0^{+0.5}_{-0.5}(^{+1.0}_{-1.0})$	3.25
		10 ¹¹	$67.8^{+0.5}_{-0.5}(^{+1.1}_{-1.0})$	3.33
		10 ¹⁸	$67.7^{+0.5}_{-0.5}(^{+1.1}_{-0.9})$	3.39
	Flat prior on N _{eff}	-	$68.3^{+0.8}_{-0.7}(^{+1.8}_{-1.2})$	2.93
ΛCDM	No coupling	-	$67.7^{+0.5}_{-0.4}(^{+0.9}_{-0.9})$	3.46

• Tension with new Riess et al. 2019 SN claim, alleviated to $4.4\sigma \rightarrow 3.7\sigma$

Axions as Hot Relics

• If $f \lesssim \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{a}{f} G \tilde{G}$

2 Efficiency peaks at $T \approx m_f$

The Ho tension

Axions as Hot Relics

• If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{\Omega_m} \frac{a}{f} G \tilde{G}$

2 Efficiency peaks at $T \approx m_f$

3 For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 - 0.07$ (measurable at 2σ by CMB S4)

• For leptons $(\mu, \tau) \implies N_{eff} \lesssim 0.6 - 0.15$ (measurable by CMB S4)

The Ho tension

 Non-diagonal couplings ⇒ production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)

Axions as Hot Relics

The QCD

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- If $f \lesssim \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha s}{8\pi} \frac{a}{f} \tilde{G} \tilde{G}$
- 2 Efficiency peaks at $T \approx m_f$
- § For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 0.07$ (measurable at 2σ by CMB S4)
- For leptons $(\mu, \tau) \implies N_{\text{eff}} \lesssim 0.6 0.15$ (measurable by CMB S4)
- **⑤** Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)
- \bullet production can alleviate H_0 tension level

Axions as Hot Relics

The QCE Axion

Axions via Gluons

Axion via Quarks

Axion/ALPs via Leptons

- If $f \lesssim \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{a}{f} \tilde{G}\tilde{G}$
 - 2 Efficiency peaks at $T \approx m_f$
- § For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 0.07$ (measurable at 2σ by CMB S4)
- For leptons $(\mu, \tau) \implies N_{\text{eff}} \lesssim 0.6 0.15$ (measurable by CMB S4)
- **⑤** Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)
- \bullet production can alleviate H_0 tension level
- **Tuture CMB experiments** will tell in a few years about the Axion (and H_0)
- Interplay with direct detection (e.g., IAXO)