

Light scalar searches at the LHC

Verena Martinez Outschoorn University of Massachusetts Amherst

> Workshop on Light scalars Benasque, Spain April 7th-13th, 2019

Motivations for New Light States

Searches for light scalars at the LHC

- Several searches at the LHC target light scalars ${\bullet}$
 - Covers both CP odd and even states \rightarrow referred to as *a-bosons* here
- Several strategies pursued ${\bullet}$

Exotic decays of the Higgs boson New opportunity since the Higgs discovery to search for Higgs portals

> → Searches for on-shell decays with $m_a \sim 0.25 - 60 \text{ GeV}$

> \rightarrow Explore displaced decays for cases where light scalar is long lived

h
$$m_h = 125 \text{ GeV}$$

 $m_a \sim 0.5 - 60 \text{ GeV}$
 $a^{}$

Searches for light states in the decays of new heavy particles

and many other examples

Challenges to Search for Light Scalars at the LHC

Backgrounds Large backgrounds from SM processes at low p_T May also have unconventional signatures with non-collision backgrounds e.g. noise, instrumental effects, beam halo ...

Higgs Boson Decays

- Higgs boson observed as a resonance in several decay channels
- Many BSM theories predict additional decays
 - Higgs Portal models of dark matter
 - Theories of Neutral Naturalness
 - Models with an extended Higgs sector e.g. 2HDM+S, NMSSM

SM Higgs Boson Decays

ATLAS-CONF-2019-005

ATLAS Preliminary	Stat.	— Sys	t. 🔲 SM
$V_s = 13$ IeV, 24.5 - 79.8 fb $m_{tr} = 125.09$ GeV, $ v < 2.5$			
$p_{SM} = 71\%$		Total Sta	at. Syst.
ggF γγ 📥	0.96	± 0.14 (± 0	.11, ^{+0.09} _{-0.08})
ggF ZZ	1.04	+0.16 -0.15 (±0	.14 , ± 0.06)
ggF WW 📥	1.08	± 0.19 (± 0	.11, ±0.15)
ggF ττ μ	0.96	+ 0.59 - 0.52 (+ 0.	$37 + 0.46 \\ 36 - 0.38$
ggF comb.	1.04	± 0.09 (± 0	.07, +0.07 - 0.06
VBF γγ μ	1.39	+ 0.40 - 0.35 (+ 0.	$ \begin{array}{r} 31 & +0.26 \\ 30 & -0.19 \end{array} $
VBF ZZ	2.68	+ 0.98 - 0.83 (+ 0.	94 + 0.27 81 , - 0.20)
	0.59	+ 0.36 - 0.35 (+ 0.	29 27 , ± 0.21)
VBF ττ μ	1.16	+ 0.58 - 0.53 (+ 0.	$\begin{pmatrix} 42 & +0.40 \\ 40 & -0.35 \end{pmatrix}$
VBF bb	3.01	+ 1.67 (+ 1. - 1.61 (- 1.	
VBF comb.	1.21	+ 0.24 (+ 0.	$ \begin{array}{r} 18 & +0.16 \\ 17 & -0.13 \end{array} $
VH γγ ι	1.09	+ 0.58 - 0.54 (+ 0. - 0.	
VH ZZ	0.68	+ 1.20 - 0.78 (+ 1. - 0.	18 + 0.18 77 , -0.11)
VH bb	1.19	+ 0.27 - 0.25 (+ 0.	18 + 0.20 17, -0.18)
VH comb.	1.15	$^{+0.24}_{-0.22}$ (± 0	$16, \frac{+0.17}{-0.16}$
ttH+tH γγ	1.10	+ 0.41 (+ 0.	$ \begin{array}{r} 36 & +0.19 \\ 33 & -0.14 \end{array} $
	1.50	+ 0.59 - 0.57 (+ 0.	$ \begin{array}{c} 43 \\ 42 \\ , \\ -0.38 \end{array} $
	1.38	+ 1.13 - 0.96 (+ 0.	84 + 0.75 76 , -0.59)
ttH+tH bb	0.79	$^{+0.60}_{-0.59}$ (± 0	.29 , ± 0.52)
ttH+tH comb.	1.21	$^{+0.26}_{-0.24}$ (± 0	.17 , ^{+0.20} _{-0.18})
2 0 2 1		6	R
		0	0
Parameter normalized to SM value			

Higgs boson branching EXPERIMENT ratios in the SM

Available measurements are only able constrain BSM decays to ≤ 22%

Exotic Higgs Decays

Higgs decays in the SM are suppressed by small Yukawa couplings, loops, or multi-body phase space

Dominant decay to b-quarks suppressed by tiny coupling $y_b \sim 0.017 \text{ v/}2$

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4\mu$

- Strategy
 - Events with 4 muons

- Search for excess in pairs of similar mass $m_{1 \mu\mu} \sim m_{2 \mu\mu}$
- Main backgrounds bb and J/Ψ events

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4\mu$

JHEP 06 (2018) 166 arXiv:1802.03388 11

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2\tau$

Signal

JHEP 11 (2018) 018 arXiv:1805.04865

Verena Martinez Outschoorn — April, 2019

• Strategy

- Events with 2 muons and 2 taus (e,μ,τ_h)
- Search for excess in dimuon spectrum
- Main backgrounds misidentified τ & ZZ

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2b$

Signal

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2b$

Signal

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4b$

- 2HDM+S Models
 - Type II: MSSM-like, d_R and e_R couple to H_1 , u_R to H_2
 - Type III: leptonspecific, leptons/ quarks couple to $H_1/$ H₂ respectively
 - **Type IV:** flipped, with u_R , e_R coupling to H_2 and d_R to H_1

New calculations including quarkonia regions JHEP3(2018)178

From LHC Higgs XS WG on Exotic Decays

Higgs to Light Scalars: Summary Results are model dependent \rightarrow assume BR(a \rightarrow XX)

Example benchmark model 2HDM+S Type I

Summary 2HDM+S

- **Type I:** all fermions couple to H₂
- Type II: MSSM-like, d_R and e_R couple to H_1 , u_R to H_2
- Type III: leptonspecific, leptons/ quarks couple to H₁/ H₂ respectively
- Type IV: flipped, with u_R , e_R coupling to H_2 and d_R to H_1

Type II, tan $\beta = 0.5$

m_a [GeV] Type II, $\tan \beta = 5$

Summary 2HDM+S

- Type I: all fermions couple to H₂
- Type II: MSSM-like, d_R and e_R couple to H₁, u_R to H₂
- **Type III:** leptonspecific, leptons/ quarks couple to H₁/ H₂ respectively
- **Type IV:** flipped, with u_R , e_R coupling to H_2 and d_R to H_1 **ATLAS Preliminary Bun 1:** $\sqrt{s} = 8 \text{ TeV. } 20.3 \text{ fb}^{-1}$

PUB-2018-045

Higgs to Light Scalars: Summary

ATL-PHYS-PUB-2018-045

Analyses starting to probe interesting region
→ stay tuned for updates with full 13 TeV dataset

Axion-Like Particles (ALPs) at the LHC

Couplings of an axion-like particle a to the SM can be described by a SM effective field theory

$$\frac{C_{ah}}{\Lambda^2} \left(\partial_\mu a\right) \left(\partial^\mu a\right) \phi^\dagger \phi + \frac{C'_{ah}}{\Lambda^2} m_{a,0}^2 a^2 \phi^\dagger \phi \qquad e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

[Bauer, Neubert, Thamm: 1704.08207, 1708.00443, 1808.10323 (+Heiles)]

Verena Martinez Outschoorn — April, 2019

ALP-like Signatures: $h \rightarrow 2a \rightarrow 2\gamma 2j$

arXiv: 1808.10515, PRD 99, 012008 (2019)

26

Verena Martinez Outschoorn — April, 2019 arXiv: 1811.08459

- Search for $a \rightarrow 2\gamma$ resonance in diphoton reconstructed mass $m_{\gamma\gamma}$
- Categorize events according to expected sensitivity - use kinematic properties and mass resolution of yy-system & y ID variables
- Main backgrounds from 2γ , γ j, jj j→hadronic jet

Slight excess observed maximal

around $m_{\gamma\gamma} \sim 95.3$ GeV with 2.8

(1.3) σ of local (global) significance

Verena Martinez Outschoorn — April, 2019 arXiv: 1811.08459

8 TeV

y (m = 90 GeV) × 10

→ γγ (m, = 90 GeV) × 10

100

CMS

900

800

700 600

500

400 F

200

100 F

CMS

Class 0

 $H \rightarrow \gamma \gamma$

Class 0

 $H \rightarrow \gamma \gamma$

Events / Ge/

best-fit mode

Events / Ge/

Data - best-fit mode

8000

7000

6000

5000

4000

3000

2000

1000

arXiv: 1811.08459

(qd)

× B(H -

29

Direct searches: $a \rightarrow 2\gamma$

target $70 \approx m_a \approx 110 \text{ GeV}$ gа Strategy

Signal

Search for $a \rightarrow 2\gamma$ resonance in diphoton reconstructed mass $m_{\gamma\gamma}$

Categorize events according to expected sensitivity - use kinematic properties and mass resolution of $\gamma\gamma$ -system & γ ID variables

- Main backgrounds from 2γ , γ j, jj i→hadronic jet
- Slight excess observed maximal around $m_{yy} \sim 95.3$ GeV with 2.8 (1.3) σ of local (global) significance

Direct searches: $a \rightarrow 2\mu + b$ -jets

Strategy

- Search for a→2µ in association with b-jet and an additional jet
- Two samples based on additional jet
 - Forward $|\eta_j| > 2.4$
 - Central $|\eta_j| < 2.4$

Main backgrounds from low mass Drell-Yan and top quark pairs

Direct searches: $a \rightarrow 2\mu + b$ -jets

CMS

19.7 fb⁻¹ (8 TeV)

Strategy

- Search for $a \rightarrow 2\mu$ in association with b-jet and an additional jet
- Two samples based on additional jet
 - Forward $|\eta_i| > 2.4$
 - Central $|\eta_i| < 2.4$

Main backgrounds from low mass Drell-Yan and top quark pairs

Slight excess observed around $m_{\mu\mu} \sim 28 \text{ GeV}$ in 8 TeV data, especially in 2μ +b+ forward jet sample

JHEP 11 (2018) 161, arXiv: 1808.01890

- Strategy
 - Search for $a \rightarrow 2\mu$ in association with b-jet and an additional jet
 - Two samples based on additional jet
 - Forward $|\eta_i| > 2.4$
 - Central $|\eta_i| < 2.4$
 - Main backgrounds from low mass Drell-Yan and top quark pairs
 - Slight excess observed around $m_{\mu\mu} \sim 28 \text{ GeV}$ in 8 TeV data, especially in 2μ +b+ forward jet sample

JHEP 11 (2018) 161, arXiv: 1808.01890

- Many models motivating Higgs decays to LLPs, for example
 - NMSSM [Chang, Fox, Weiner 2005]
 - Hidden Valleys [Strassler, Zurek 2006; Han, Si, Strassler, Zurek 2007]
 - Twin Higgs [Chacko, Goh, Harnik 2005]
 - Fraternal twins [Craig, Katz, Strassler, Sundrum 2015]

LLP Experimental Signatures

Long Lived Decays: $h \rightarrow displaced muons$

- Strategy
 - Search for displaced vertices (DV) in the muon system
 - No tracks in inner detector
 - Low backgrounds

In ATLAS can detect dimuon DVs in large decay volume

Verena Martinez Outschoorn — April, 2019

Phys. Rev. D 99, 012001 (2019) arXiv:1808.03057

36

LL Decays: $h \rightarrow$ displaced jets in muon system Signal Strategy а Search for multitrack h displaced vertices in muon system а (LLP) No tracks in inner detector nor calorimeter signals 2 DVs DV + MET % CL Upper Limit on $\sigma / \sigma_{SM} \times B_{h(125) \rightarrow as}$ B h(125)→aa = 100% *B* h(125)→aa = 10% 10^{-1} 10⁻² 10⁻³ h(125)→aa, m_a = 5 GeV ATLAS 2 DVs + h(125)→aa, ma = 8 GeV 10⁻⁴ √s=13 TeV, 36.1 fb⁻¹ h(125)→aa, m_a = 15 GeV 2 prompt h(125)→aa, m_a = 25 GeV Combined limit h(125)→aa, m_a = 40 GeV jets 10⁻⁵ 10⁻² 10⁻¹ 10² 10^{3} 10 1 95 Scalar proper lifetime $(c\tau)$ [m]

Verena Martinez Outschoorn — April, 2019

PRD 99, 052005 (2019), arXiv:1811.07370

Related analysis with Z + displaced jet in backup

38

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4b$ Long-Lived Interpretation

Summary & Outlook

- Program of searches for light scalar states at the LHC
 - New light resonances
 - Long lived particle signatures
- Several strategies pursued
 - Exotic decays of the Higgs boson
 - Light states produced in the decays of new heavy particles
 - Direct or associated production of light states
- Need to continue to explore possibilities to cover full spectrum of options
 - Uncovered channels & regions of phase space, gaps in LLPs, etc
 - Invisible decays → already being explored at the LHC
 - Mixed decays → largely uncovered so far
 - Other production channels e.g. tta
- Signatures motivated by broad range of phenomenology
 - Benchmark models are very useful to guide analyses
 - Please let us know if you have suggestions for scenarios to cover!

More results expected soon with full 13 TeV dataset

Verena Martinez Outschoorn — April, 2019

ETmiss

BACKUP

Direct searches: $a \rightarrow 2\gamma$

Signal

ATLAS-CONF-2018-025

Verena Martinez Outschoorn — April, 2019

Strategy

Search for $a \rightarrow 2\gamma$ resonance in diphoton reconstructed mass m_{vv}

target

а

65 ≤ m_a ≤ 110 GeV

Categorize events based on conversions Main backgrounds: $\gamma\gamma$, γ j, jj j \rightarrow hadronic jet No significant excess observed

LL Decays: $h \rightarrow Z+displaced$ jet in calorimeter

Verena Martinez Outschoorn — April, 2019

arXiv:1811.02542

