Axions from Strings

Ed Hardy

Based on work with:

Marco Gorghetto & Giovanni Villadoro

[JHEP 1807 (2018) 151, ongoing]

QCD axion

Spontaneously broken anomalous global U(1)

 $\frac{a}{f_a} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$

 $a \to a + \delta$ $f_a \gtrsim 10^8 \, \mathrm{GeV}$

QCD runs into strong coupling

axion potential

$$\theta_{\rm tot} = \langle a \rangle + \theta' = 0$$

Bonus feature: a QCD axion can automatically be the dark matter

Concentrate on scenario with

$$f_a < \max\left(H_I, T_{\text{eff}}\right)$$

Immediately after U(I) breaking, the axion field is random over the universe:

U(I) breaking after inflation

Reliable prediction: interpret ongoing experiments, design future experiments

Precise agreement with an experimental discovery

minimum inflation scale

Strings and domain walls

Strings and domain walls

Axion emission during scaling

Parametrisation:

$$\rho_{\text{scaling}} = \frac{\xi\left(t\right)\mu\left(t\right)}{t^2}$$

 $\xi\left(t
ight)$ = Length of string per Hubble volume

 $\mu(t) = \text{string tension} = \text{energy per length}$

Axion emission during scaling

Parametrisation:

$$\rho_{\text{scaling}} = \frac{\xi\left(t\right)\mu\left(t\right)}{t^{2}}$$

 $\xi\left(t
ight)$ = Length of string per Hubble volume

 $\mu\left(t
ight)$ = string tension = energy per length

Axion emission during scaling

Parametrisation:

$$\rho_{\text{scaling}} = \frac{\xi(t) \mu(t)}{t^2}$$

 $\xi(t)$ = Length of string per Hubble volume $\mu(t)$ = string tension = energy per length

 $\xi\left(t
ight)$ & $\mu\left(t
ight)$ approximately constant

Energy release:

$$P_{\text{emitted}} \simeq \frac{\xi\left(t\right)\mu\left(t\right)}{t^{3}}$$

Distribution of axion momenta

natural cut-offs at H and $\,f_a\,$ but:

(1)
$$\frac{dP_{inst}}{dk} \sim \frac{1}{k^{\cdot q}}$$
 "soft" spectrum with $\langle k^{-1} \rangle \sim H^{-1}$
 $q > 1$

(2)
$$\frac{dP_{inst}}{dk} \sim \frac{1}{k}$$
 "hard" spectrum with $\langle k^{-1} \rangle \sim \frac{H^{-1}}{\log(f_a/H)}$

String dynamics

Hard to study analytically, can help with qualitative understanding, but full network has complicated interactions and dynamics

Instead resort to numerical simulations

Numerical simulation

Simulate full complex scalar field and potential on a lattice (no benefit to simulating just the axion)

Evolve using finite difference algorithm

Identify strings by looking at field change around loops in different 2D planes

group identified lattice points

Why it's hard

Large separation of scale

• String core is very thin
$$\delta_s \simeq \frac{1}{f_a}$$

• Hubble distance is much larger
$$H^{-1} \simeq \frac{M_{\rm pl}}{T^2} \simeq \frac{M_{\rm pl}}{\Lambda_{\rm QCD}^2}$$

String tension depends on the ratio of string core size and Hubble scale

$$\mu(t) \simeq \pi f_a^2 \log\left(\frac{H(t)^{-1}}{\delta_s}\right) =: \pi f_a^2 \log\left(\alpha(t)\right)$$

Why it's hard

Numerical simulations need

- a few lattice points per string core
- a few Hubble patches

Can only simulate grids with $\sim 5000^3$ points

simulations:
$$\log \alpha \leq \log(\frac{1}{2}) \simeq 7$$

physical:

We simulate at small scale separation then extrapolate

Crucial to extrapolate the correct quantities (not the number density)

•	•	•	•	•	•	•	•	2	4	
•	•	٠	٠	٠	•	•	•	•		
•	٠	٠	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	٠	•	•	•	•	•	•	
•	•	•	٠	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

String length per Hubble volume

Attractor solution, independent of initial conditions

String length per Hubble volume

Find a log increase,

theoretically plausible: tension is increasing

If extrapolation is valid, grows to ~ 10 at QCD scale

Total spectrum

Total spectrum

Instantaneous emission spectrum

This is the physically relevant thing to extrapolate

UV dominated!

Instantaneous emission spectrum

This is the physically relevant thing to extrapolate

But evidence for a log dependence

Fitting the power law

Slope of the instantaneous spectrum

Spectrum

Best fit over the constant slope region:

Also seems to have a log dependence

Axion number density

Extrapolate all the way to large logs

Axion number density

Extrapolate all the way to large logs

Impact on the relic abundance

Impact on the relic abundance

Assuming extrapolation is valid

Conclusions

- QCD axion particularly well motivated
- PQ symmetry breaks after inflation in large classes of models
- In principle leads unique prediction for the axion dark matter mass
- Simulations are far from the physically relevant regime
- Essential to extrapolate, and be aware of the uncertainties

