FPGAS as a Service to Accelerate
Machine Learning Inference
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The CMS Detector: Phase 0

SILICON TRACKER
Pixels (100 x 150 um?) BRIL
~im?  ~66M channels Luminosity Telescope: ~200k Si pixels (100 x 150 um?)

Microstrips (80-180um) Beam Monitors: 80 diamond sensors, 40 quartz counters
BRlL ~200m? ~9.6M channels
Pixels

CRYSTAL ELECTROMAGNETIC
Tracker CALORIMETER (ECAL)
ECAL ~76k scintillating PbWO, crystals
HCAL
Solenoid
PRESHOWER
§tee| YOke Silicon strips (6cm x 2mm)
MLL@W&S ~16m? ~137k channels
STEEL RETURN YOKE

~13000 tonnes

SUPERCONDUCTING
SOLENOID
Niobium-titanium coil

carrying ~18000 A FORWARD

CALORIMETER

/ Steel + quartz fibres
HADRON CALORIMETER (HCAL) N ~2k channels
Total weight : 14000 tonnes Brass + plastic scintillator  MUON CHAMBERS
Overall diameter :15.0 m ~7k channels Barrel: 250 Drift Tube & 480 Resistive Plate Chambers
Overall length :28.7m Endcaps; 473 Cathode Strip & 432 Resistive Plate Chambers

Magnetic field :38T

LPC Topic of the Week Kevin Pedro



The CMS Detector: Phase 2

Phase 2 Upgradewm}mmm
1947M <« Pixels (100 x 150 )
~im?  ~66M channels
Microstrips (80-180um)
BRIL ~200m? ~3.6M channels
Pixels
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£ H -\&n ~76k scintillating PbWO, crystals
HCAL :’,__3\\‘ .
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WSEegInYOke I I //' "?. r~\ 1 ' Silicon strips (6cm x 2mm)
VIUONS . ‘ _ ~16m? ~137k channels
% if '
133 | - High Granularity
s’ 4 Calorimeter (HGCal)

Silicon, scintillator

/ ~6M channels
A

CALORIMETER
Steel + quartz fibres

HADRON CALORIMETER (HCAL) ~2k channels
Brass + plastic scintillator :
~7k channels P h ase 2 U pg rad e
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CMS Computing Challenges

Energy frontier: HL-LHC  FS%8 136PU event (2018)

e 10x data vs. Run 2/3
— exabytes

« 200PU
(vs. ~30PU in Run 2)

e CMS:

0 15x increase in pixel
channels

0 65x Increase In
calorimeter channels

o (similar for ATLAS)
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Neutrino Computing Challenges

Intensity frontier: DUNE

Sigral FT chimreys with

Field cage sLspersion

 Largest liquid argon detector
ever designed

e ~1M channels, 1 ms integration
time w/ MHz sampling
— 30+ petabytes/year

Sanford Underground
Research Facility

Fermilab

» CPU needs for particle physics will increase by
more than an order of magnitude in the next decade
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How Bad Is It?

 CMS does extensive resource CPU seconds by Type
projections for HL-LHC ] o Nt
14001 W LHC MC
« Expected needs for 2027 (HL-LHC 200 || mm Avaiyss
startup): 1000

800 A

THSO06 *

0 1,400,000 CPU cores HSF Community

0 2.2 exabytes disk, 3 exabytes tape White Paper

. "1 arXiv:1712.06982
« Usually project 20%/year “technology 2001
Improvement” from Moore’s law 0

NNNNNNNNNNNNNN
NNNNNNNNNNNNNN

» Still a shortfall of 2-5x More at CMSOfflineComputingResults
* More realistic: 10%/year

» Shortfall of 4-10x

600 -

 Try to thrive, not just survive
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https://arxiv.org/abs/1712.06982
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

The Computing Landscape

 Transistor counts continue to grow
» Clock speed and single-thread

performance have stagnated

» No longer expect traditional
CPUs to keep up with demands

from particle physics

» Coprocessors: specialized
hardware attached to CPU,
dedicated to specific tasks

O
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Development for Coprocessors

 Large speed improvement from hardware accelerated coprocessors
o Architectures and tools are geared toward machine learning

4 A

re-write physics algorithms
for new hardware

Option 1

Language: OpenCL, OpenMP,
HLS, CUDA, ...?

\ Hardware: FPGA, GPU /

Why (Deep) Machine Learning?

-

Option 2

~

re-cast physics problem as
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,...)

\Hardware: FPGA. GPU. ASIC/

« Common language for solving problems: simulation, reconstruction, analysis!
» Can be universally expressed on optimized computing hardware

(follow industry trends)
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Deep Learnmg In Science and Industry

-----

Inception-v4

Inception-v3 ResNet-152

] ResNet-50 VGG-16 VGGr19

ResNet-101
. ResNet-34

9

® 2570 o ﬁ ResNet-18
g 0o
DeepAK8 g ENet GooglLeNet
8 65 -
[(v] : .
| @snnm arXiv:1605.07678
o
F 601 5M 35M - 65M---95M - - 125M - -155M
BN-AlexNet
55 1 AlexNet
50 Y T T Y Y T T v
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

* ResNet-50: 25M parameters, 7B operations
 Largest network currently used by CMS:
0 DeepAKS, 500K parameters, 15M operations

* Newer approaches w/ larger networks in development...
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https://arxiv.org/abs/1605.07678

Top Tagging

CMS Simulation, Vs = 8 TeV
_||||||||||||||||||||||

12 | | LR IR IR
@ 01 — QCD PYTHIA 6
© I — ftPOWHEG
c 0.08r- -
jo) i CMS Top Tagger |
‘g 0,065 Jetp, > 500 GeV/c -
Sk CAR=038 <24
0.04[ ]
0.02F .
OOI | 50 1(|)0 1|50 2(|JO |2|50 3(|JO 350 IAIfOO
Jet mass (GeV/c?)
: : CMS Simulation, /s =818V @ @ e
* High p; top quarks are boosted: form asingle g o12F __ ooppyrias ]
large-radius jet with substructure S o1 — fiPOWHEG .
c L _
« Top tagging started as simple cuts on high- S 0081 e n s 500 sevio -
level variables (right) S ol cAR=0s <2 :
» Now advanced to particle-level deep neural 004l 1
networks (next slide) ; 025_ 1
« (Can also do Higgs tagging, W/Z tagging, etc.) ; o

0 0102 O.|3 O.I 0.5 06 0|7 08 09 _1
CMS-PAS-JME-17-003 W%
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http://cds.cern.ch/record/1647419

Top Tagging with Deep Learning

1

Y
<

QCD multijet efficiency
o

13 TeV

| Simulation Preliminary

1000 < P, < 1400 GeV, 0| < 1.5
Top vs QCD multijet

=+=BDT (w/o b-tag)
=+=BDT (Full)

DNN (Particle kinematics)
—DNN (

Particle full)

CMS DP 2017 049

0.4

0.6

0 5 1
Top efficiency

* DNNs outperform simpler ML
algorithms (such as BDTs)

» Many approaches now developed

o0 Some use much larger networks than
DeepAKS: Particle cloud, ResNet-like

» Metrics: AUC, accuracy, 1/eg @ £5=30%
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Approach Acc. |1/eB Contact Comments
@
e5=0.3)
LoLa 0.980 | 0.928 | 680 GK/ Preliminary number, based on
Simon LoLa
Leiss
LBN 0.981 | 0.931 | 863 Marcel Preliminary
Rieger number
CNN 0.981 | 0.93 |780 David Shih | Medel from Pulling Out All the
Tops with Computer Vision and
Deep Learning (1803.00107)
P-CNN 0.980 | 0.930 | 782 Huilin Qu, | Preliminary, use kinematic info
(1D CNN) Loukas only
Gouskos | (https:/findico.physics.Ibl.gov/i
ndico/event/546/contributions/1
2701)
6-body 0.979 | 0.922 | 856 Karl Based on 1807.04769 (Reports
N-subjettiness Nordstrom | of My Demise Are Greatly
(+mass and pT) Exaggerated: N-subjettiness
NN Taggers Take On Jet Images)
8-body 0.980 | 0,928 | 795 Karl Based on 1807.04769 (Reports
N-subjettiness Nordstrom | of My Demise Are Greatly
(+mass and pT) Exaggerated: N-subjettiness
NN Taggers Take On Jet Images)
Linear EFPs 0.980 |0.932 | 380 Patrick d<=7, chi <= 3 EFPs with FLD.
Komiske, Based on 171 2 DT‘I 24: Enargy
Eric Flow Poly A
Metodiev linear basis for jet subsrrucfure
Particle Flow 0.982 |0.932 |888 Patrick Median over ten trainings. Based
Network (PFN) Komiske, on Table 5 in 1810.05165: Energy
Eric Flow Networks: Deep Sets for
Metodiev Particle Jets.
Energy Flow 0.979 | 0.927 | 619 Patrick Median over ten trainings. Based
Network (EFN) Komiske, on Table 5 in 1810.05165: Energy
Eric Flow Networks: Deep Sets for
Metodiev Particle Jets.
2D CNN 0.984 | 0.936 | 1086 Huilin Qu, | Preliminary from
[ResNeXt50] Loukas indico.cern.chlevent/745718/contri
Gouskos butions/3202526
DGCNN 0.984 | 0.937 | 1160 Huilin Qu, | Preliminary from
Loukas indico.cern.chievent/745718/contri
Gouskos butions/3202526

G. Kasieczka
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https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.09914
http://cds.cern.ch/record/2295725
https://indico.cern.ch/event/745718/contributions/3174397/attachments/1754642/2844395/Autoencoder_ML4Jets.pdf

Top Tagging with Images

QCD, averaged over 5k jets  top, averaged over 5k jets
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Deep learning in industry focuses on image recognition

Jets are not images, but can pretend in order to test industry networks

Convert jets into images using constituent p, n, @: 224x224 pixels

Standardized top quark tagging dataset is publicly available:
https://goo0.gl/XGY]u3
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https://goo.gl/XGYju3

Top Tagging with ResNet-50

10

e Retrain ResNet-50 on pub] |C|y —— Floating point: AUC = 98.0%, acc. = 90.1%, 1/es = 671
) ] - Quant.: AUC = 97.5%, acc. = 84.1%, 1/e = 415
available top quark tagging —.— Quant, f.t.: AUC = 98.2%, acc. = 93.0%, 1/es = 971
10-1 4 e Brainwave: AUC = 98.2%, acc. = 92.6%, 1/eg =9 /
dataset — - Brainwave, f.t.: AUC = 98.3%, acc. = 93.5%,/'

— New set of weights,
optimized for physics

Background efficiency
=)

,_.
o
&

0 Add custom classifier layers
to interpret features from
ResNet-50 10-

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency

* ResNet-50 model that runs on FPGAs is “quantized”
0 Tune weights to achieve similar performance

» State-of-the-art results vs. other leading algorithms
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Beyond Tagging
. "'-*l l }

5 HEP.TrkX |
. Message Passing Neural Network
Graph-based ML for tracking

* R&D to use novel network
architectures for tracking and clustering

» Optimal use of complex new detectors
 May be crucial for Phase 2 --------- MPNNforHGCaI
Prediction Exploit hexagonal cells & 3D
= structure '

J. Kieseler ...

s rog
elp ® 0o I
Ty
-: Y {-100
] o9 /
g >
e S P .
&y Fermilab
SLF LDRD
750 L
(GravNet) <m0~ 1.2019.017
14
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https://heptrkx.github.io/
https://arxiv.org/abs/1902.07987

NoVA: First Particle Physics CNN

15} -
— Appeared v,
= —— Survived v,
O
o — NC background
% 19 —— Beam v, background
x
w
2
c
Q
> -
m —
ol—
0 02 0.4 08 0.8 1
v, CC Classifier Output
— 1 1 |
60__ —— Appeared v, |
= | —— Survived v,
O
o - —— NC background
‘s 40— —— Beam v, background n
%
e o]
2
S 20|
= i
L
0 L“-i_ | L L L | L L L
0 02 0.8 1

0.4 0.6
v, CC Classifier Output
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* NOVA was the first particle physics

experiment to publish a result obtained
using a CNN

* Achieved similar efficiency for v,
(58% vs. 57%), improvement for v,
(49% vs. 35%) vs. existing algorithms
(arXiv:1604.01444)

» Used to constrain oscillation
parameters: (arXiv:1703.03328)

» Inverted mass hierarchy w/ 0,5 in
lower octant excluded at 93% CL for
all 6p values

Kevin Pedro 15


https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328

Neutrino Recognition with ResNet-50

Top View - Top View
v, CC Event 70 i __4-"'- » Event
60+ -rh ey e
. P, l“.} ‘\ lew
ol _"_..n" v, CC Event
- ---
i0 o - .
L
1m0 -%--.1-
]
( T
] | a0 B
Side \"jl'\\' ' Side View
v, CC Event 70 4 v, CC Event nt

0] .

. . .
D1 g
e
s - H-'I--'q___\-_. R

T ——— Y
° L

0 I

ResNet-50 can also classify neutrino events to reject cosmic ray backgrounds

Use transfer learning: keep default featurizer weights, retrain classifier layers

Events above selected w/ probability > 0.9 in different categories

CNN inference already a large fraction of neutrino reconstruction time

» Prime candidate for acceleration with coprocessors
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Why Accelerate Inference?

 Training is viewed as “hard” part
of machine learning

e But...

* DNN training happens
~once/year/algorithm

0 Cloud GPUs or new HPCs
are good options

e Once DNN is in common use, inference will happens billions of times
o MC production, analysis, prompt reconstruction, high level trigger...

» Training is done by developers, inference is done by everyone

LPC Topic of the Week Kevin Pedro 17



Inference as a Service
HE BB

e Inference as a service;

o0 Minimize disruption to existing
computing model

o0 Minimize dependence on
specific hardware

0 Avoid need for large input batches
= Large batches are necessary to use GPUs efficiently

= Not a good fit for most particle physics applications: prefer to load one
(complex) event into memory, then run all algorithms on it

» Performance metrics:
o Latency (time for a single request to complete)

o Throughput (number of requests per unit time)

LPC Topic of the Week Kevin Pedro 18



What are FPGAS?

« Field Programmable Gate Arrays Data
010010100111C 147
01101110

* “Programmable hardware”.
arrange gates to perform desired task

« Execute many instructions in parallel
on input data: spatial computing

o vs. CPUs, which execute instructions
In series: temporal computing

» Can be reconfigured in 100ms-1s

o |deal for deep networks: many
operations, fixed model parameters

» ASICs (Application Specific Integrated
Circuits) not configurable — require
stable problem to solve

LPC Topic of the Week Kevin Pedro 19



Coprocessors: An Industry Trend

Specialized coprocessor hardware
rosoft

O
. e K/l Catapult/Brainwave
for machine learning inference e —

ASIC

A11 Bionic neural engine

Delivering FPGA Partner Solutions on AWS
via AWS Marketplace

FPGA

Customers

’ {
8009 T
[

AWS Marketplaca |

Amazon
Machine AmazoanPGA Image
Image (AMI) =] (AFI)

AFl is secured, encrypled.
dynamically loaded into the
FPGA - c g .
Amazon EC2 FPGA do

"‘-41 | Deployment via Marketplace FPGA+AS I C

XILINX

VERSAL.

#&  Industry’s First ACAP

Adaptive Compute Acceleration Platform
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‘ Microsoft Brainwave

= | ' | Network switch (top of rack, cluster)

| Lml : —— FPGA - switch link
. g /\ <~ FPGA acceleration board
) ) ——— NIC-FPGA link

TR

1oL ~—7 2-socket CPU server

Catapult ISCA 2014.pdf

2-socket server blade

Datacenter hw acceleration plane /

TOR |TORH e 7 7 7 7
AV TAA —/ Deep neural A~ L L
7 — Expensive /
— v networks # - 9(
A ——— —~ compression
X/ /// d /// // £ L £ /// Z
b search s .
sy s // // Bioinformatics //
‘ ¥ 15 4 4 ranking -~ / yd 8
Z 7 Z

Gen3 x8

Accelerator card

A | /‘/ V\t
Traditional sw (CPU) server plane
(a)

» Provides a full service at scale
(more than just a single co-processor)

* Multi-FPGA/CPU fabric accelerates
both computing and network

» Weight retuning available: retrain supported
networks to optimize for a different problem

S ezr:t Wi 7
; d /7
‘HI a /, /
| I S
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40Gb,
L TOR

(b)

Brainwave supports:
» ResNet50

e ResNetl52

e DenseNetl121
 VGGNetl6

21


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Catapult_ISCA_2014.pdf

Particle Physics Computing Model

Event Processing Job

Configuration | —> Parameter ( \
Sets 5

MODULE 1 > ML INFER 1

MODULE 2 MODULE 6
Input Source - Output 1
(data or simulation) » Output 2

MODULE 3
.......threads
MopuLE 4 |—>| MobuLE5 |—>| ML INFER 2
Database |—> | Event Setup L

» Event-based processing
o Events are very complex with hundreds of products
0 Load one event into memory, then execute all algorithms on it
» Most applications not a good fit for large batches, which are required for

best GPU performance
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Accessing Heterogeneous Resources

» New CMSSW feature called ExternalWork:

o Asynchronous task-based processing

External . . FPGA,
processing 1& ' GPU, etc. _\
7 A
e, | Lacaure) produce(

o Non-blocking: schedule other tasks while waiting for external processing
» Can be used with GPUs, FPGAs, cloud, ...
0 Even other software running on CPU that wants to schedule its own tasks

» Now demonstrated to work with Microsoft Brainwave!

LPC Topic of the Week Kevin Pedro 23



SONIC In CMSSW

Services for Optimized Network Inference on Coprocessors

o Convert experimental data into neural network input
0 Send neural network input to coprocessor using communication protocol

o Use ExternalWork mechanism for asynchronous requests

Currently supports:
o0 gRPC communication protocol

= Callback interface for C++ API in development
— wait for return in lightweight std::thread

o TensorFlow w/ inputs sent as TensorProto (protobuf)

Tested w/ Microsoft Brainwave service (cloud FPGAS)

gRPC SonicCMS repository on GitHub

LPC Topic of the Week Kevin Pedro 24


https://github.com/hls-fpga-machine-learning/SonicCMS/tree/kjp/1020_azureml_ew

Cloud vs. Edge

Heterogeneous Cloud Resource
8Rpc

CPU farm

CMSSW
~—1
| Network input |

| Prediction |

\

Heterogeneous Edge Resource

e Cloud service has latency

e Run CMSSW on Azure cloud machine

— simulate local installation of FPGAs
(“on-prem” or “edge”)

* Provides test of ultimate performance

» Use gRPC protocol either way
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SONIC Latency

| - —— remote
103 - L ——- onprem
| ] . . .
i Liogarithmic x-axis
|
wn |
£ 1024 |
S ]
11 i
1
10' 4 i
-| -
ol
.| :. :
10°4 S e B {ﬂﬂﬂ
10° 10! 102 103
Time [ms]

* Remote: cmslpc @ FNAL to Azure (VA),

Events

o Highly dependent on network conditions

e On-prem: run CMSSW on Azure VM,

o FPGA: 1.8 ms for inference

0 Remaining time used for classifying and 1/0
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10*

100 {

10391 _

|

—— remote
—-—- onprem

Linear x-axis

i1

50

«time> = 60 ms

<ime> =10 ms

150

Time [ms]

200 250 300
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Scaling Tests

Worker Node
| JetlmageProducer | “~<

~

“\f@t%r Brainwave Service
~

Worker Node | \Jf —
JetimageProducer | —~~==~< S S T
=y ~ I rngnni
‘ / ——e il i
m e © HHH
el # m
- 7 NN
-7 EE NN

. A
-

Worker Node el
JetlmageProducer

* Run N simultaneous processes, all sending requests to 1 BrainWave service
» Processes only run JetlmageProducer from SONIC — “worst case’ scenario
o Standard reconstruction process would have many non-SONIC modules

» FPGA performs inference serially (1 image at a time)

LPC Topic of the Week Kevin Pedro 27



SONIC Latency: Scaling

300 10%
250{ mean + std. dev. “violin” plot
— o o —
€ 200+ — 1031
[a— wn
] - o
£ 150 S
]
c S I I
o 100+ = 102
E —1— —_— ———
50 > D i B
0h o 10! ‘ . : . .
10° 10t 102 10° 1 10 50 100 500
Simultaneous processes Simultaneous processes

e Tests: N =1, 10, 50, 100, 500
» Only moderate increases in mean, standard deviation, and long tail for latency

o Fairly stable up to N =50
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Total time [s]

104

103 4

102

SONIC Throughput

“violin” plot 700
600 -

u
o
o

Inferences / s
NS
o
o

— —
- — 300+
— 200
1001
T T T T T 0 T T T T T T T — T T
1 10 50 100 500 10° 10! 102 103
Simultaneous processes Simultaneous processes

Each process evaluates 5000 jet images in series

Remarkably consistent total time for each process to complete
o Brainwave load balancer works well

Compute inferences per second as (5000 - N)/(total time)

N = 50 ~fully occupies FPGA:

o Throughput up to 600 inferences per second (max ~650)
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CPU Performance

0.6 12 - @ azure resnet cpu l-core
——————————————————— ~e A azure resnet cpu 4-core
" 059 O ® = d V azure resnet cpu 8-core
% ( m_ ® ; ® e 101 © resnetcpu 1-c2re
o j‘ . 0 @) -0 : n % resnet cpu 8-core *
5 0.4 =2ao i a'i'ur"e’Feér%t cpu 1-core ; . * * * * *
5 A azure resnet cpu 4-core 8
= 0.3 ¥V azure resnet cpu 8-core c \% Vv \V/ v \v4 v
: Q resnet cpu 1-core 8 A A A A A A
) % resnet cpu 8-core qa_" B
Q0.2 ] A A A A A A S a4 ..
g 4 9 4 & S v R PP -
0.1 A A S 8§ 8 8 8 8 §
___SONIC latency w/ Brainwave _ e
000 10 20 30 40 50 60 70 80 %0 10 20 30 40 50 60 70 80
Batch size Batch size
« Above plots use i7 3.6 GHz, TensorFlow v1.10
e Local test with CMSSW on cluster @ FNAL.:
o Xeon 2.6 GHz, TensorFlow v1.06
0 5 min to import Brainwave version of ResNet-50
0 1.75 sec/inference subsequently
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GPU Performance

100 ;
] @® azure resnet gpu
iy A resnet gpu
) ¥V resnet gpu train
e 1071 @
(] 1
O |®
Y
£ v\
T SONIC latency w/ Brainwave
310 I\ W T & -~ "o """
£ 33 vV VvV v v v v
|_ ]
' A A A A A A
103 . r . : . ; .
0 10 20 30 40 50 60 70
Batch size

80

» Above plots use NVidia GTX 1080, TensorFlow v1.10
» GPU directly connected to CPU via PCle

e TF built-in version of ResNet-50 performs better on GPU than quantized
version used in Brainwave
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1000
@ azure resnet gpu
800 é rz:zt QEU train
u |
" SONIC throughput w/ Brainwave _
: 600 1 A A
Q A
@)
c
o &
3 4001 A
£ A
A v
200 1 v v v \ 4 v
0 10 20 30 40 50 60 70 80
Batch size
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Performance Comparisons

Latency [ms]

Throughput [img/s]

Xeon 2.6 GHz | 1750 0.6
CPU* :

17 3.6 GHz 500 2

batch = 1 7 143
GPU**

batch = 32 1.5 667

_ remote 60 660

Brainwave

on-prem 10 (1.8 on FPGA) | 660

e *CPU performance depends on:
o clock speed, TensorFlow version, # threads (=1 here)
e **GPU caveats:
o Directly connected to CPU via PCle — not a service
o Performance depends on batch size & optimization of ResNet-50 network
e SONIC achieves:
» 175% (30%) on-prem (remote) improvement in latency vs. CMSSW CPU!
» Competitive throughput vs. GPU, w/ single-image batch as a service!

LPC Topic of the Week
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Summary

Particle physics experiments face extreme computing challenges

o More data, more complex detectors, more pileup

Growing interest in machine learning for reconstruction and analysis
0 As networks get larger, inference takes longer

FPGASs are a promising option to accelerate neural network inference
o Can achieve order of magnitude improvement in latency over CPU
o0 Comparable throughput to GPU, without batching

> Better fit for event-based computing model

SONIC infrastructure developed and tested

o Compatible with any service that uses gRPC and TensorFlow
» Paper with these results in preparation

» Thanks to Microsoft for lots of help and advice!

o Azure Machine Learning, Bing, Project Brainwave teams
o Doug Burger, Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Andrew Putnam
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Continuing Work

Continue to translate particle physics algorithms into machine learning

o Easier to accelerate inference w/ commercial coprocessors

Develop tools for generic model translation

0 E.g. graph NNs used for HEP.TrkX and other projects

Explore broad offering of potential hardware

0 Google TPUs, Xilinx ML suite on AWS, Intel OpenVINO, ...

Continue to build infrastructure and study scalability/cost

o Adapt SONIC to handle other protocols, other network architectures and
ML libraries, other experiments (e.g. neutrinos)
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A Vision of the Future

Feynman Computing Center, Fermilab “Edge” instance
HE NN

» A single FPGA can support many CPUs — cost-effective

0 SONIC throughput results indicate 1 FPGA for 100-1000 CPUs running
realistic processes (many algorithms, only some ML inferences)

o Install small “edge” instances at T1s and T2s

o0 Can also install a dedicated instance for CMS HLT farm at CERN
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Backup



Jet Substructure
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External Work in CMSSW (1)

Setup:

« TBB controls running modules

« Concurrent processing of multiple events

» Separate helper thread to control external

 Can wait until enough work is buffered

before running external process
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External Work in CMSSW (2)

Acquire:
External
* Module acquire() method called Controlling
Thread

0 -

e Pulls data from event

» Copies data to buffer
; Running MOBBES
o Buffer includes callback to start next A

phase of module running

MODULE
A

Waiting
To Run MDEI;ULE MDI;ULE

MODULE MODULE
C C

Event Loop Event Loop
1 2
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External Work in CMSSW (3)

Work starts:

External a
 External process runs Controlling

Thread

» Data pulled from buffer

» Next waiting modules can run

(concurrently) Running

MODULE
B

Waiting
To Run

MODULE MODULE
C C

Event Loop Event Loop
1 2
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External Work in CMSSW (4)

Work finishes:
External

* Results copied to buffer Cﬂntmlling

 Callback puts module back into queue

Running m

Waiting
To Run

MODULE

f %ﬁ

Event Loop Event Loop
1 2
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External Work in CMSSW (5)

Produce:

* Module produce() method is called

e Pulls results from buffer

» Data used to create objects to put into

event
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