

TECHNOLOGY TRANSFER FOR THE XLS-XFEL

Angeliki Karagiannaki², Theodoros Apostolopoulos², Katerina Pramatari², Stratos Baloutsos², Evangelos Gazis¹

2) Athens University of Economics & Business

Midterm Review Meeting, Helsinki, 01-04 July 2019

Strategy & Methodology

To be followed

Complexity of the CompactLight Do we try to push the "entire thing" or bits and pieces - what is most likely to succeed?

Definition of the project results/assets (what will be exploited?)

Matching exploitable results with WPs and project objectives

Type of Project Result

- New Knowledge
- Software or/and Hardware products
- Services, Methodologies

Decision on the exploitation strategy for each asset (how we are going to exploit it?)

Scientific Exploitation/ Further research

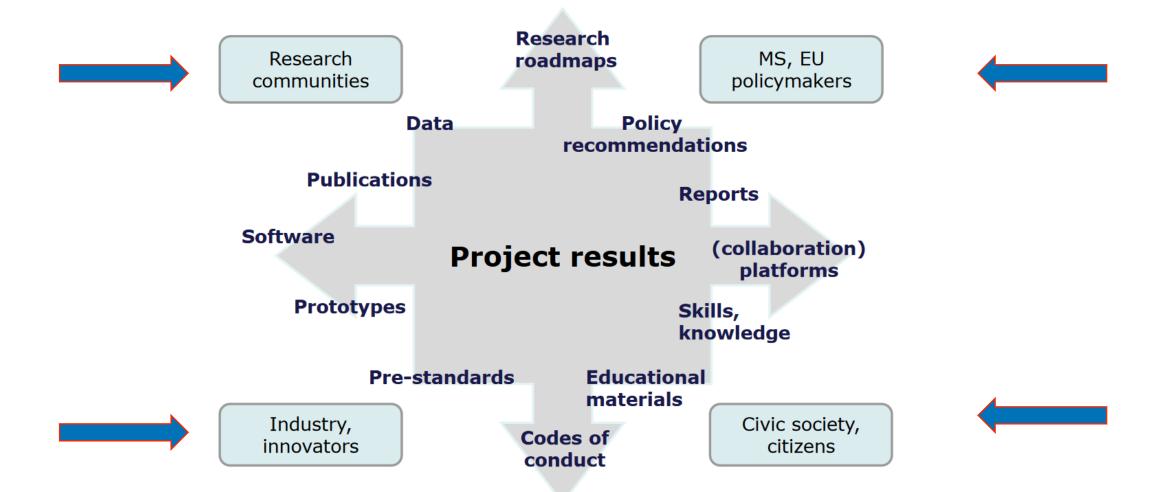
- Publications in media of general interest and academic journals
- Data
- Educational materials
- Research roadmaps

<u>Purpose: scientific, advancement of knowledge</u>

Standardization and Open Source Contribution

- Best practice guidelines
- Open Data
- Investigative reports
- Briefing materials
- Consultation reports
- Standards Guide
- Policy recommendations
- Codes of conduct

Purpose: Industry, Societal, Political


Commercial Exploitation (Technology Transfer or Creation of a Spin-off)

- Prototypes
- Software or hardware
- Services and Methodologies

Purpose: **Economic**

Identification of Potential Users and Stakeholders (who will benefit?)

Select a strategy for each Exploitable Result «Divide & Conquer»

	Scientific Exploitation/ Further research	Standardisation & Open Source contribution	Commercial exploitation
Knowledge			
Software and/or hardware products		Productive4 Platform	
Services and methodologies			

How to identify the Exploitable Results, Strategy and Stakeholders

Exist in the individual deliverables

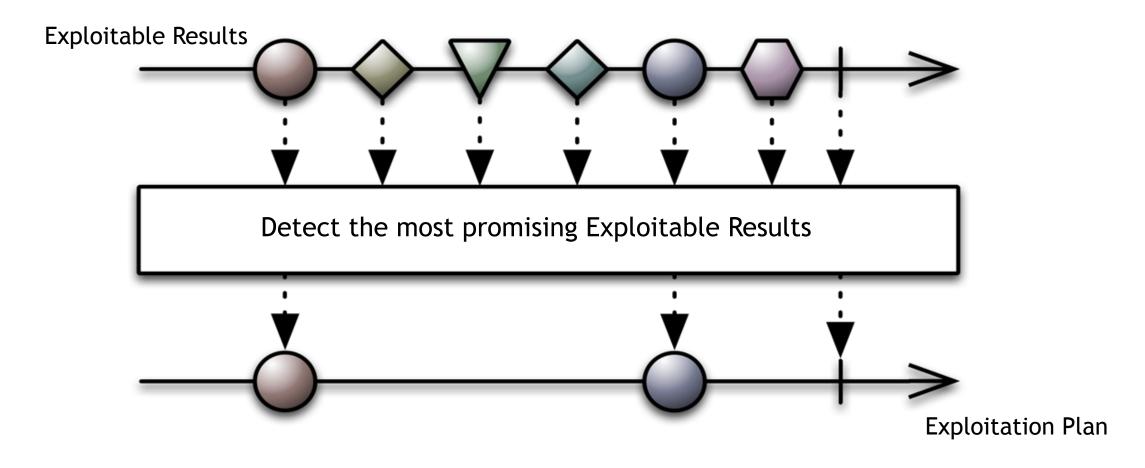
 The detailed description of each exploitable result will not be repeated in the Exploitation plan

Conduct Internal Workshops (Semi-structured Interviews or Focus Groups)

- with the representatives from WP
- via phone, skype or F2F meetings

Design a survey

- Measure the perceptions of stakeholders or future users community
- Assess the exploitation potential of CompactLight results


Topics to be addressed during the internal workshops and the survey

- **Type of result** (product, process, SW, service, etc.)
- Innovation. State of the Art exceeded
- Benefits (to customers, collaboration partners, public etc..)
- Technology Readiness Level-TRL and the progression up to TRL9 (*)
- Technical challenges
- Time to Market
- Protection and Intellectual Property Rights-IPR issues

(*) TRL 9 (TRL Scale in Horizon 2020 and ERC) - Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

What we wish to achieve?

THE EXPLOITATION PLAN: what steps should be included

Define the value proposition knowledge, product and services of the project

Define the market potential, the target end-users and all potential Competitors

Be aware of the business model and a focused financial plan

Define all the dissemination activities required for a best exploitation

Include IPR and standardization Strategies

1

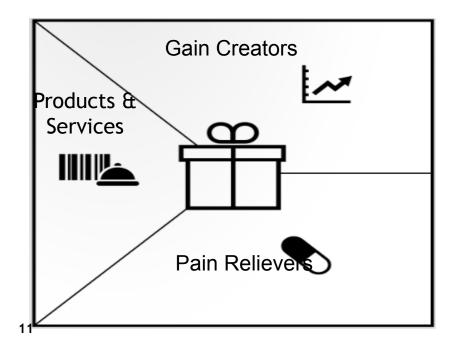
<u>Z</u>

33

4

5

Step 1 Value Proposition Analysis



The customer and business value of Exploitable Results are investigated and measured

Product and services

Gain Creators: create customer gains

• Pain Relievers : alleviate customer pains

	 Which one of your products and services customers really want? Which ones they want most?
~	Which one of your gain creators customers really need or desire?Which ones they crave most?
•	 Which one of your pain relievers helps your customers with their headaches? Which ones they long for most?

Source: Osterwalder et al., 2014

Step 2 Validation of the business opportunity: **SWOT Analysis**

Identify the Strengths, Weaknesses, Opportunities, and Threats of the research result/ knowledge output:

- What are the strengths and weaknesses of your business or potential business?
- Who are your competitors and what are their strengths and weaknesses?
- What is your competitive advantage over your competitors?

	Opportunities (external, positive)	Threats (external, negative)
Strengths (internal, positive)	Strength-Opportunity strategies Which of the company's strengths can be used to maximize the opportunities you identified?	Strength-Threats strategies How can you use the company's strengths to minimize the threats you identified?
Weaknesses (internal, negative)	Weakness-Opportunity strategies What action(s) can you take to minimize the company's weaknesses using the opportunities you identified?	Weakness-Threats strategies How can you minimize the company's weaknesses to avoid the threats you identified?

Source: Albert Humphrey,

SWOT Analysis

SWOT: Strength - Weakness - Opportunity - Thread

Strength

- New design with improved specifications than existing facilities
- Active and broad collaboration with experience teams in the project
- Industrial partnership
- Scientific, Engineering, Finance & Economical academic partnership
- Less expensive final product

Weakness

- Many technological option(s) to various parts of our project, No yet decided the final option
- Effort to cover many sub-areas of X-ray production

SWOT Analysis

SWOT: Strength - Weakness - Opportunity - Thread

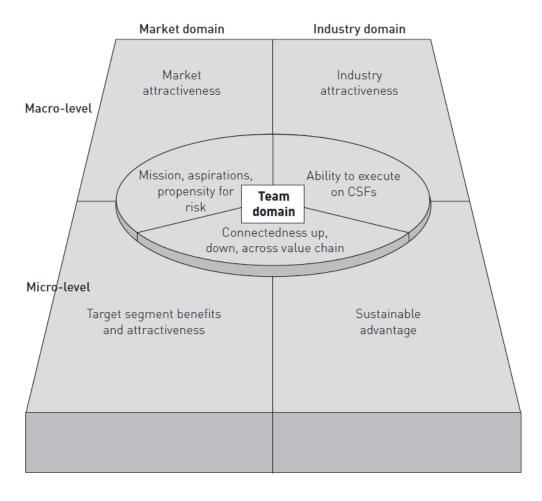
Opportunity

- Large areas without light source in Europe and elsewhere for implementation of our final product
- Cooperation development with institutions and countries to commercialize our product
- Future member of the XFEL network

Thread

- Parallel XFEL projects under current development or operation
- Different technology projects providing S-/C-band X-rays or some of them

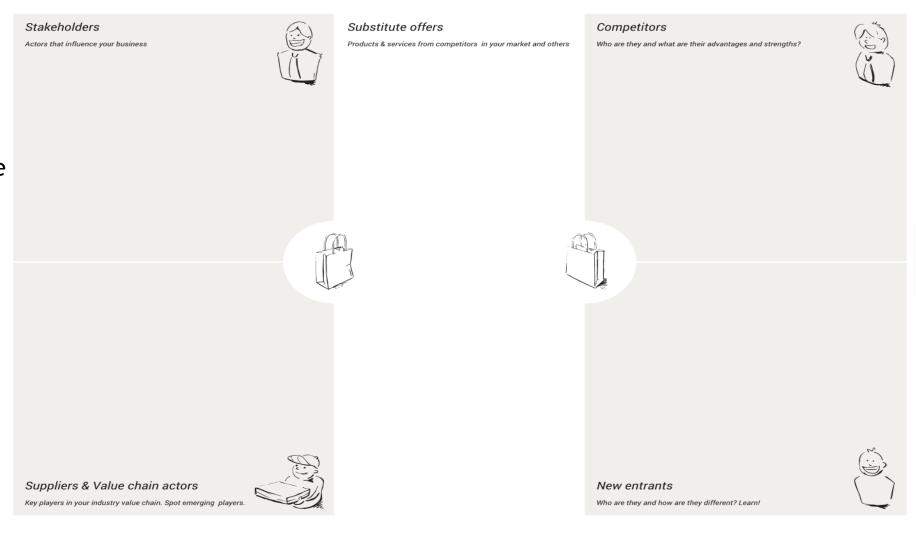
Recommendation


 It is strongly recommended the CompactLight collaboration to focus, mainly, to the option(s) and deliverables is obliged to submit to the EC funding agency as in the approved proposal

Step 2

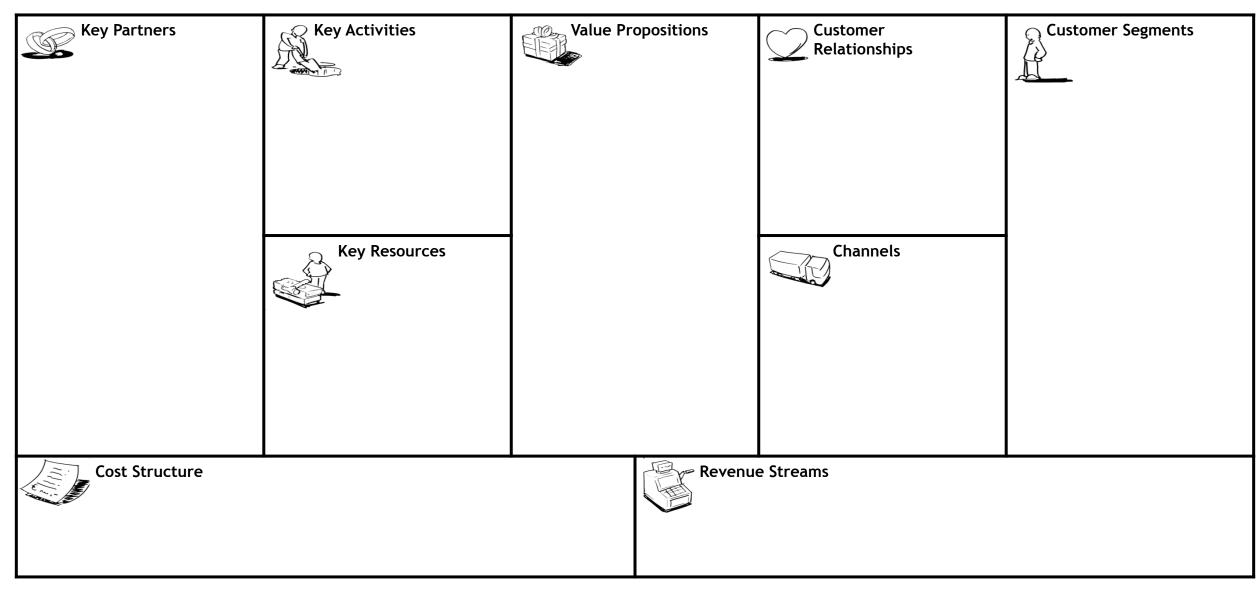
Market and Industry Research The Seven Domain Model

- The seven domain Framework Toolkit by Mullins (2003) provides the answer IF our product is attractive to market / industry
- Obtain information about the current market by researching trends and analyzing the competition.
 - What is the estimated size of the market for the product/service?
 - What is the projected market share?
 - Is the current market attractive for the product/ service?
 - Are there any predictions for future trends?
 - Which are the existing business models?



Source: Mullins, 2003

Step 2 **Competition Analysis**


Conduct continuous update about competition (existing or emerging alternative solutions)

Source: Osterwalder et al., 2014

Step 3 **Business model generation**

Source: Osterwalder et al., 2010

Step 4 Challenges and Risks

- Identification and assessment of the risks and barriers to be overcome in order to enable the exploitation of the results
- Characterize the root causes of risks that have been identified and quantified in
- Evaluate risk interactions and common causes.
- Identify alternative mitigation strategies, methods, and tools for each major risk.
- Assess and prioritize mitigation alternatives.
- Select and commit the resources required for specific risk mitigation alternatives.

Expected exploitable result	Likely risk	Mitigation / elimination strategy

Step 6 IPR Management

- Partners' individual exploitation interests
- Exploitation Team
- Entrepreneurial capacity
- Intellectual Property Rights (IPR) Analysis
 - Overview of IPR Agreements
 - Patents (existing or not)

IPR Ownership Matrix

Product	License	IP owner
Product X		
Product Y		
Service X		
Service Y		
Tool X		

Checklist for Exploitation

- ✓ Different **types of exploitable results** (knowledge, methods, agreements, networks, technologies) are clearly identified and their direct and indirect value and impact for different stakeholders are considered
- ✓ Describes the **exploitation plan** (market and industry analysis, competition analysis, business model) to ensure that the results meet real needs, and will be taken up by potential users
- ✓ Describes the **roles and responsibilities of partners** in exploiting results or supporting results exploitation by other (intermediate or end users)
- ✓ The barriers and risks for exploitation (actual use of the results after project funding) are recognized and countered with appropriate measures
- ✓ IPR management activities must be reported (ownership scheme patent applications, licenses, copyrighted/copylefted material, registered designs etc.)

Next Steps and Critical issues to discuss

Step	Critical issue	Contributors
Collecting input regarding exploitable results from WP1-6	When? How?	Volunteers??
Share the methods and tools for exploitation (Value map, business model canvas, five domain model etc.) and decide on which of them to adopt	Share also educational material for each method	
Organize internal workshops (interviews or focus group) for identifying exploitable results, strategy and stakeholders (maybe in conjunction with the dissemination activities i.e. conference)	Build commitment	66
Design the quantitative online survey		66
Share and complete the quantitative online survey	Build commitment	
Develop the exploitation plan for each project result (market and industry analysis, SWOT analysis, competition analysis, business model) and the Productive 4 cross domain platform as a totality	Have a common approach, For each WP objective (1-6) assign a responsible partner	66
Identify and assess challenges and risks		66
Develop an IPR management	Situations of co-ownership	66

Initial Market Research

Porter's 5 forces Analysis

Supplier Power

????

Threat of New Entries

- Requires extended research to enter
- High barriers to entry
- Small number of potential new entrants
- High Cost

Competitive Rivalry

- High Switching Cost
- High cost of leaving the market
- High customer loyalty
- Some competitors

7

- Unique offering
- Difficult to replicate
- Some Substitutes

Threat of Substitution

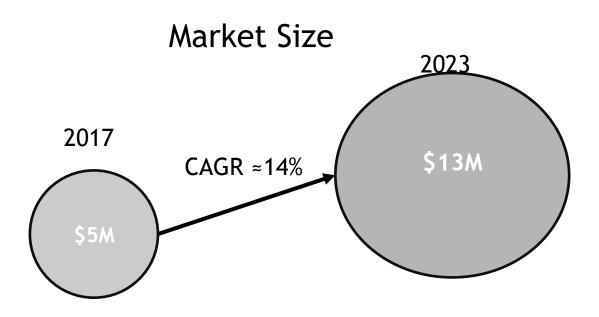
Buyer Power

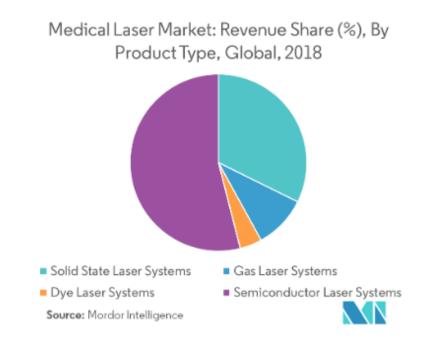
- Many potential buyers
- Highly knowledgeable
- Very sensitive to mistakes

X-FEL derivative technologies can be applied in various promising sectors

- Medical
- Polymers
- Defense/Military
- Semiconductor Lithography
- Chemistry
- Advanced materials
- Biology

- Super-resolution Microscopy
- Metallurgy
- Agriculture





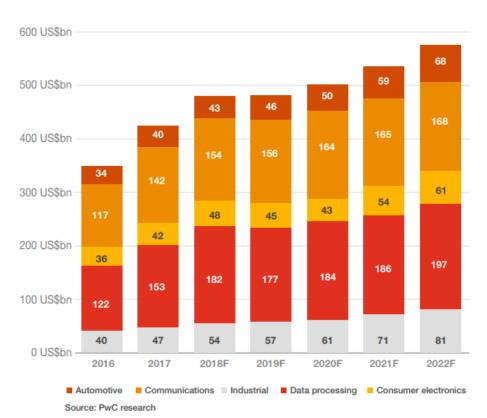
We picked several sectors to showcase the promising commercial value of the developed technologies

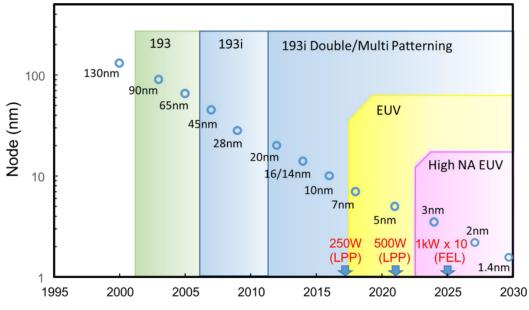
X-FEL derivative technologies can be used in the Medical Lasers market

Characteristics

- Highly fragmented market
- Large growth globally
- North America is the largest market

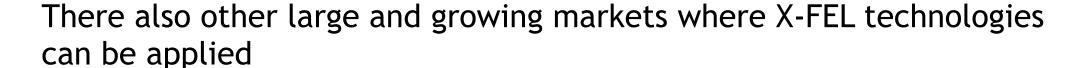
Sub-sectors


- Ophthalmology
- Dermatology
- Gynecology
- Dentistry
- Urology
- Cardiovascular

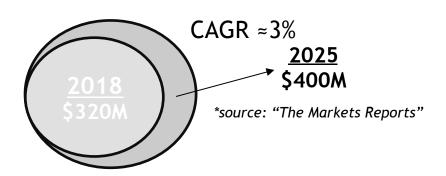

A highly promising area is the **Semiconductor Lithography** market

EUV-FEL Light source will be needed from the stage of 3nm Node (~2025). It is important to develop the feasible technologies on ERL-FEL and also handling of the high peak power FEL light source.

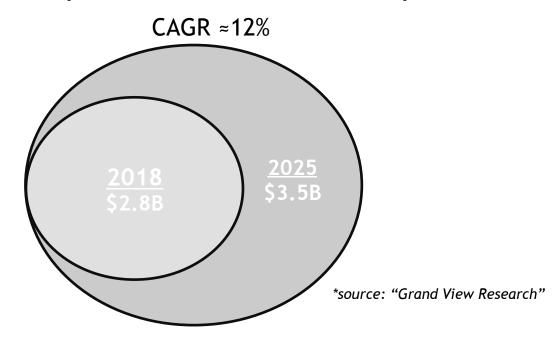
Market Size and sub-sectors



*source: Kawata H., 2017 Int. Workshop on EUV Lithography


Characteristics

- Growing market
- Relatively saturated but rapidly evolving due to new technologies
- FEL technologies can provide lasting competitive advantage

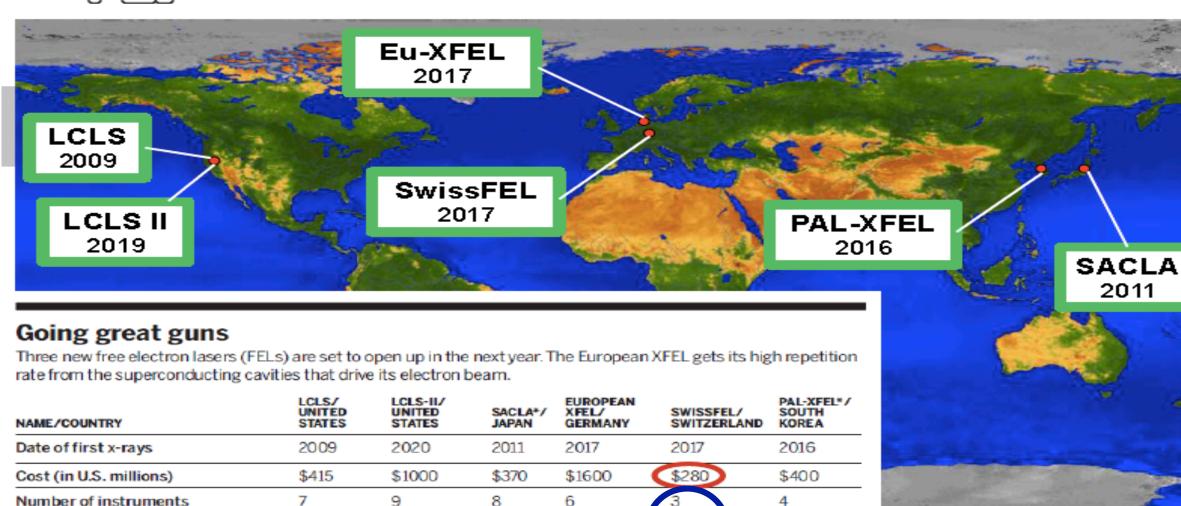


Isotope Separation

Super-resolution Microscopes

Improving on current knowledge in these sectors using FEL can drastically alter the current markets and provide new and improved products and services

Cost Model Analysis


Max. electron energy (GeV)

Pulses per second

Min. pulse duration (femtoseconds)

COST of LCLS/EU/SWISS/SACLA/PAL -XFEL systems by H.H. Braun (ATS Seminar, CERN, 22 June 2017)

X-FELs worldwide

17.5

27.000

5

5.8

100

10

30

60

8.5

10

60

*SACLA is the Spring-8 Angstrom Compact free electron Laser and PAL-XFEL is the Pohang Accelerator Laboratory X-ray Free Electron Laser

1.000.000

4.5

15

14.3

15

120

A draft COST MODEL for Compact Light

Sub-Systems

- RF-Gun
- Injector
- Main Linac
- Klystrons
- Bunch Compressors
- Magnets
- Undulator System
- Controls & Operation

Rough %

- 6
- 9
- 16
- 25
- 10
- 5
- 25
- 4

Current draft COST MODEL for Compact Light

Sub-Systems		Rough %
•	RF-Gun	6
•	Injector linac	9
•	Main linacs	23
•	Klystrons	20
•	Bunch Compressors	10
•	Main Dump System	6
•	Undulators	15
•	Infrastructure & Services	4
•	Machine Control, Protection & Operation	4 4

Final %

Values are expected from the Carlo Rossi table breakdown structure of parts

A QUESTIONNAIRE is under preparation for WP leaders

Current draft COST MODEL for Compact Light

•Questionnaire (draft)

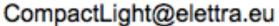
- Main devices
- Raw Materials
- Labor cost
- Licenses
- Software
- Capital investment cost vs business plan time
- Others
- Machine Commissioning & Operation
- Machine Maintenance

1. RF Gun System

	RF Gun System			
	Level 1	Level 2	Level 3	Level 4
CODE	Name*	Name*	Name*	Name*
ROOT	XLS			
1	RF Gun System			
1.1		Photocathode System		
1.2		Laser System		
1.3		RF System		
1.3.1			Klystron Modulator System	
1.3.1.1				Modulator
1.3.1.2				Klystron
1.3.1.3				Solenoid System
1.3.2			RF Power Distribution System	
1.3.2.1				RF Waveguide System
1.3.2.2				RF Loads and Hybrids
1.3.3			RF Gun Cavity	
1.3.4			Low Level RF & Timing	
1.3.4.1				RF Driver Amplifiers
1.3.4.2				RF Signal Acquisition and Control
1.3.4.3				Timing Generation and Distribution
1.4		Support and Alignment System		
1.4.1			Alignement DAQ and Control System	
1.4.2			Alignment Instrumentation System	
1.5		RF Gun Vacuum System		
1.5.1			Vacuum Pumps and Connecting Elements	
1.5.2			Vacuum Power Supply	
1.5.3			Vacuum Instrumentation System	

1. RF Gun System, continued

1.6	Magnets and Correctors		
1.6.1		Beam Focusing	
1.6.1.1			Solenoid Magnet
1.6.1.2			Solenoid Power Supply
1.6.1.3			Hall probe
1.7	Beam Instrumentation System		
1.7.1	Electron Beam Daignostics		
1.7.1.1		Beam Current Transformer	
1.7.1.2		Beam Position Monitor	
1.7.1.3		Transverse Profile Monitor	OTR/YAG:Ce-type crystalscreen monitor
1.7.1.4		Longitudinal Profile Monitor	
1.7.1.5		Emittance Monitor	
1.7.1.6		Beam Loss Monitor	
1.7.1.7		Transverse Deflecting Cavities	High-resolution bunch length
1.7.2	Photon Beam Diagnostics		
1.7.2.1		Photon Intensity	
1.7.2.2		Photon Beam Posistion	
1.7.2.2		Pulse Length & Time Arrival	THz camera
1.7.2.3		Photon Wavelength	Bragg crystal
1.7.2.4		Attenuation (Gas+Solid)	Gas attenuation
1.7.2.5		In-beam Detectors	Screens
1.8	RF Gun Interface to Infrastructure		
1.8.1		Cavity Tuning Control Interface	Cavity Temperature Control
1.8.2		Control System Interface	Control System
1.8.3		High-speed Communication Link	Diagnostics System
1.9	RF Gun Commissioning		



References

- Garvey, P.R. (2008). Analytical Methods for Risk Management: A Systems Engineering Perspective,
 Chapman-Hall/CRC-Press, Taylor & Francis Group (UK), Boca Raton, London, New York
- Humphrey, A. (December 2005). SWOT Analysis for Management Consulting. SRI Alumni Newsletter. SRI International
- Mullins, J. (2003). The New Business Road Test: What Entrepreneurs and Executives Should Do Before Writing a Business Plan. Financial Times/ Prentice Hall
- Osterwalder, A., Pigneur, Y., Bernarda, G. and Smith, A. (2014). Value Proposition Design: How to Create Products and Services Customers Want, Wiley
- Osterwalder, A., Pigneur, Y. and Smith, A. (2010). Business Model Generation, Wiley

www.CompactLight.eu

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

