

WP3 – Gun and Injector

Massimo.Ferrario@LNF.INFN.IT

- Laser/Photocathode
- RF/DC Gun
- Solenoid
- RF Velocity Bunching

- RF Linearizer and L. Heater
- Magnetic Chicane
- Transv. RF Deflector
- Beam Diagnostics
- To design the Compact High Brightness Injector
- To design the proper matching with the X-band Linac

XLS-Report-2019-001 27 June 2019

* * * * Funded by the European Union

XLS-Report-2019-001 25 June 2019

XLS Deliverable D3.1

Preliminary assessments and evaluations of the optimum e-gun and injector solution for the CompactLight design

M. Ferrario^{1)*}, D. Alesini*, F. Cardelli*, G. Castorina*, M. Croia* M. Diomede* A. Gallo* A. Giribono*

N. Gazis, E. Tanke and E. Trachanas, IASA R. Hoekstra, T. Lucas, ARCNL P. Mutsaers, TU/e

C. Blanch^{‡‡}, J. Fuster^{‡‡}, B. Gimeno^{‡‡}

On behalf of the CompactLight Partnership

Prepared on: 27.06.2019

* INFN, Italy, † ST, Italy, ‡ CERN, Switzerland, § STFC, UK, ¶ IASA, Greece, $^{\parallel}$ UA-IAT, Turkey, ** TU/e, Netherlands, †† CNRS, France, ** CSIC, Spain

XLS Deliverable D3.2

Review report on bunch compression techniques and phase space linearization

J.M. Arnesano^{||}, M. Croia[‡], S,. Di Mitri^{1)*}, L. Ficcadenti^{**}, A. Faus-Golfe[§], A. Giribono[‡], Y. Han[§], A. Latina[†], X. Liu[†], E. Marin Lacoma[¶], R. Muñoz Ḥorta[¶], A. Mostacci^{||}, L. Palumbo^{||},

B. Spataro[‡], C. Vaccarezza[‡]

On behalf of the CompactLight Partnership

Prepared on: 25.06.2019

¹Corresponding author: massimo.ferrario@Inf.infn.it

^{*} Sincrotrone Trieste, Italy, † CERN, Switzerland, * INFN-LNF, Italy, § LAL, France,

¹ ALBA-CELLS, Spain, || Sapienza, Italy, ** INFN-Roma, Italy

¹Corresponding author: simone.dimitri@elettra.eu

Agenda WP3

- M. Ferrario, INFN-LNF, "Introduction" 10'
- S. Di Mitri, Sincrotrone Trieste, "Review of magnetic bunch compression schemes for CompactLight, " 10'
- D. Alesini, INFN-LNF, "C-band gun design and high repetition rate challenges", 10'
- A. Latina, CERN, "Compact S+X injector scheme", 10'
- B. G. Martinez, IFIC, "X-band RF electron gun injector design", 10'
- B. Spataro, INFN-LNF, "A possible electron gun for the 35 GHz klystron", 10'
- E. Gazis, IASA-ESS, "3D design efforts for the e-gun", 10'
- Discussion (all), 20'

Coordinated by WP

partners and PCO

Review by WP

Work carried out:

Part B – Free Text Report

Contents

1.1 General Project Objectives	Wor	rk carried out & Overview of	f th	ne	pr	og	res	SS											4
	1.1	General Project Objectives					*			•	+	 		*				100	4

This work was partially supported by the European Union's Horizon 2020 Research and Leaders for their WF Innovation programme under grant agreement No 777431 (XLS).

Objectives & Impact:

Draft by LP Review by PCO

Deviations in WPs:

- Coordinated by WP Leaders for their WP
- Review by WP partners and PCO

Other deviations:

- Concerned partners
- Review by PCO

Ex	loitation & Dissemination: Update
Da	a Management Plan: Update
De	riations from Annex 1 & Annex 2
4.1	Tasks & Objectives
	4.1.1 Workpackage 1
	4.1.2 Workpackage 2
	4.1.3 Workpackage 3
	4.1.4 Workpackage 4
	4.1.5 Workpackage 5
	4.1.6 Workpackage 6
	4.1.7 Workpackage 7
4.2	
	4.2.1 Partner P22, UH/HIP
	4.2.2 Partner Pyy, Acronym
	4.2.3 Partner Pzz, Acronym
4.3	
7.0	4.3.1 Partner Pxx, Acronym
	4.3.2 Partner Pyy, Acronym
	4.3.3 Partner Pzz, Acronym
4.4	
	of charges
	4.4.1 Partner Pxx, Acronym
	4.4.2 Partner Pyy, Acronym
	4.4.3 Partner Pzz, Acronym
	7.7.0 (autor 1 22, Actoriyii

Exploitation Plan:

- Draft by Regina
- Review by WP7 partners and PCO

Data Management:

- Draft by Andrea
- Review by Communication Group and PCO

Actions WP3

Each Partner

- Partner Activity Reports:
 - send to WP Leaders
 - review relevant WPs
 - Integrate continuous report tables (if needed)

Deadline 15 July 2019

- Describe and explain any deviations (subsections 4.2 -4.4):
 - use of resources
 - unforeseen subcontracting
 - unforeseen use of resources from 3rd parties
 - Overleaf link: ask Regina

Deadline 15 July 2019

- Partner's financial report:
 - prepare and submit
 - check PFSIGN

Deadline: 09 August 2019

Work Package Leaders

- Activity Report for WPs (subsections of 1.2):
 - collect contributions from WP partners (if needed)
 - prepare WP report in Overleaf

Deadline 20 July 2019

- Deviation in the WPs (subsections of 4.1):
 - describe and explain, including contingency measures (if needed)
 - insert in Overleaf

Deadline 20 July 2019

- General Review:
 - review and agree all parts of report

Deadline: 09 August 2019

PC, DPC, and AC

- Prepare General Parts:
 - drafts for structured tables
 - sections 1.1 (objectives) and 1.3 (impacts)
 - update of exploitation plan (section 2)
 - update of DMP (section 3)

Deadline: 25 July 2019

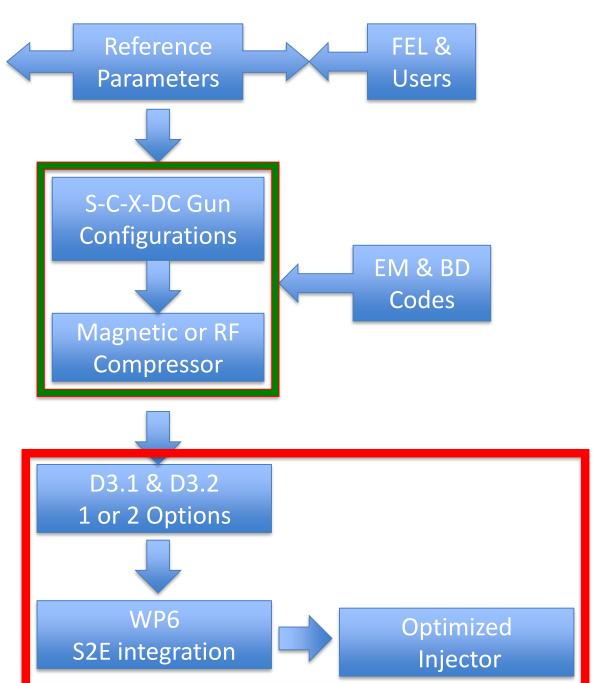
- Send Report for Review:
 - Agree report with PCO
 - Agree report with partners

Deadline: 09 August 2019

- Financial Reporting:
 - review partner reports
 - prepare summary financial statement

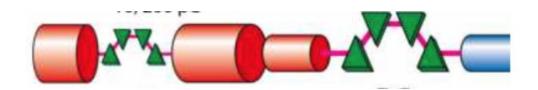
Doodling: 00 August 2010

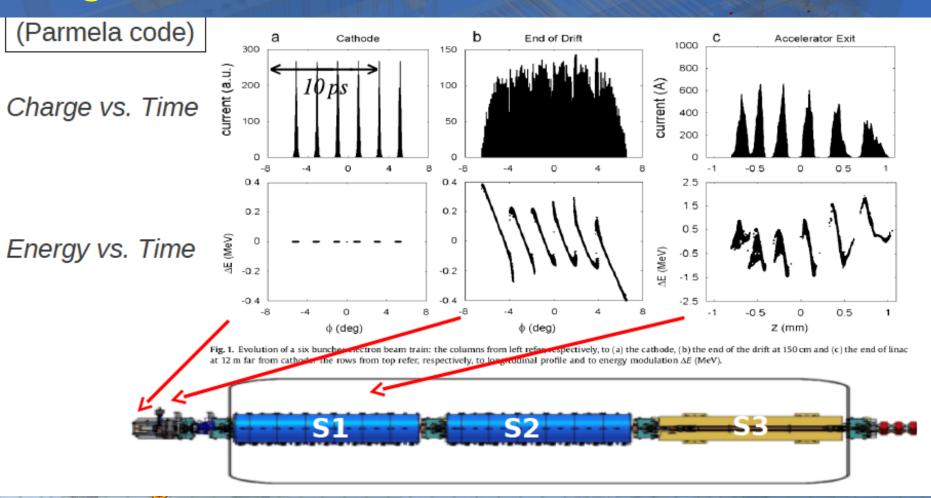
Report Submission:


16 August 2019

Next Deliverables

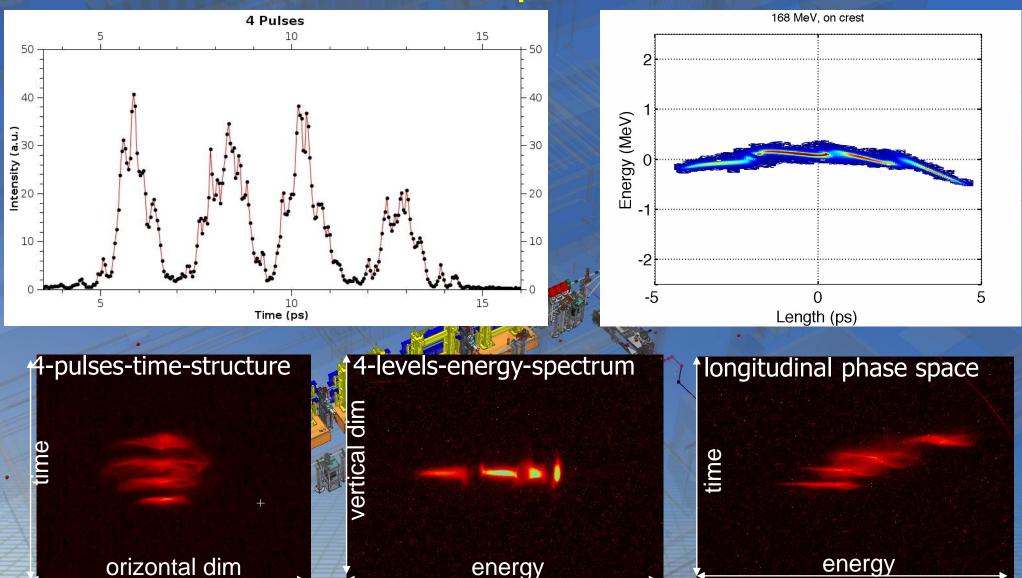
- D3.1 Preliminary assessments and evaluations of the optimum e-gun and injector solution for the CompactLight design, (=>M18).
- D3.2 A review report on the bunch compression techniques and phase space linearization, (=>M18).
- D3.3 Design of the injector diagnostics/beam manipulations based on a X-band cavities, (=>M36).
- D3.4 Design of the CompactLight e-gun and injector, with phase space linearizer (=>M36).


Parameters	Units	After VB and/or BC1
Charge (Q)	pC	75
Beam energy	MeV	300
rms bunch length (σ_t)	fs	350
Peak current $(Q/\sqrt{12}\sigma_t)$	A	60
rms Energy Spread	%	0.5
Projected rms norm. emittance	μm	0.2
Repetition rate	Hz	100 -1000

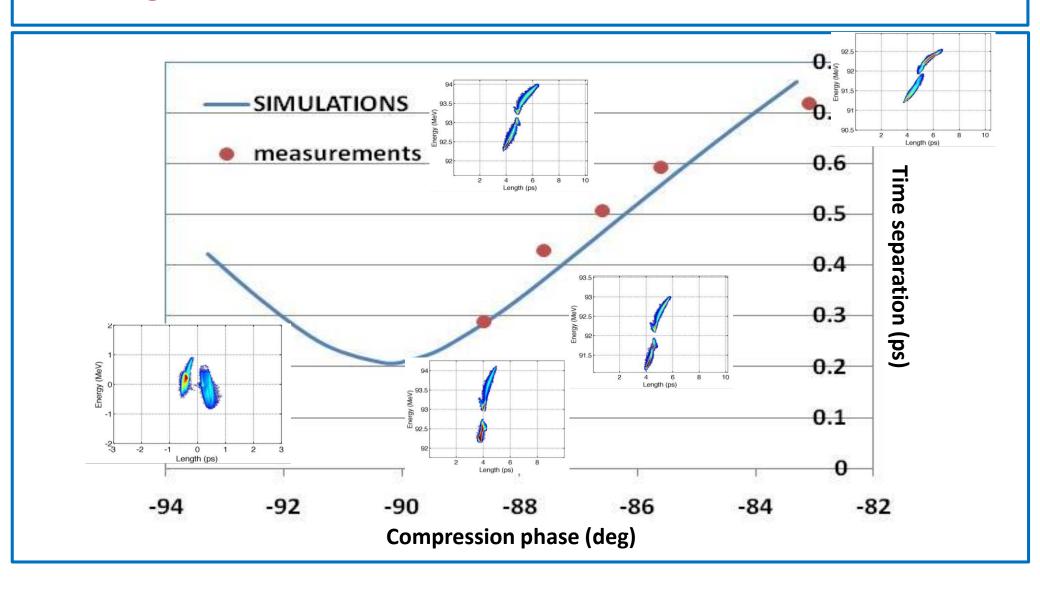

Reference Parameter List

New: 2 bunches challenge Injector capability 100 – 1000 KHz

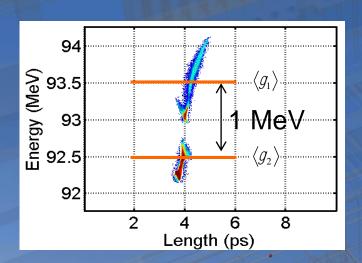
Parameters	Units	After VB and/or BC1
Charge (Q)	рC	75
Beam energy	MeV	300
rms bunch length (σ_t)	fs	350
Peak current $(Q/\sqrt{12}\sigma_t)$	A	60
rms Energy Spread	%	0.5
Projected rms norm. emittance	μm	0.2
Repetition rate	Hz	100 -1000



Laser Comb technique: generation of a train of short bunches

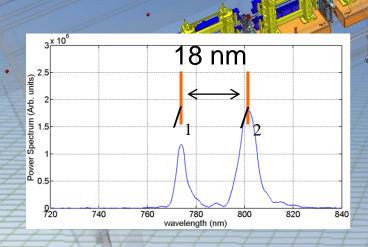

- P.O.Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.
- M. Ferrario. M. Boscolo et al., Int. J. of Mod. Phys. B, 2006

Laser COMB: experimental results

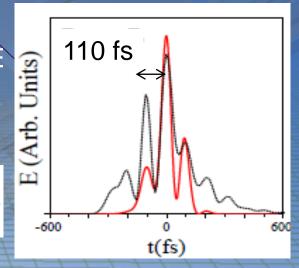


- M. Ferrario et al., Nucl. Inst. and Meth, A 637 (2011)
- A. Mostacci et al., Proc. of IPAC 2011, Spain

Longitudinal Dynamics: Compression Curve


TWO COLORS SASE FEL

two bunches with a two-level energy distribution and time overlap (Laser COMB tech.)


$$I_r = \frac{I_u}{2g^2} \left(1 + K_{rms}^2 \right)$$

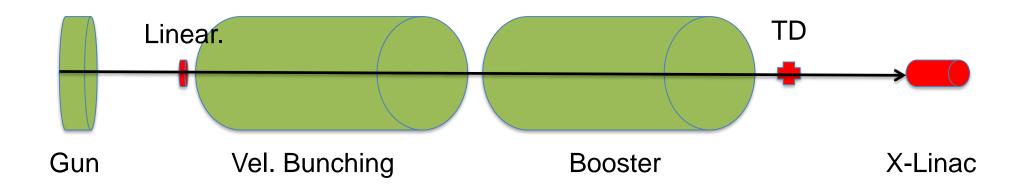
$$\frac{\mathsf{D} I_{r}}{\langle I_{r} \rangle} = 2 \frac{\langle g_{1} \rangle - \langle g_{2} \rangle}{\langle g \rangle}$$

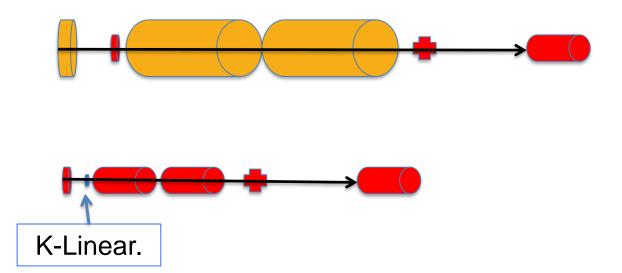
produce two wavelength SASE FEL radiation with time modulation

$$Dt = \frac{I_u \left(1 + K_{rms}^2 \right)}{4c \langle g \rangle \langle g_1 \rangle - \langle g_2 \rangle}$$

Tasks and sub-Tasks

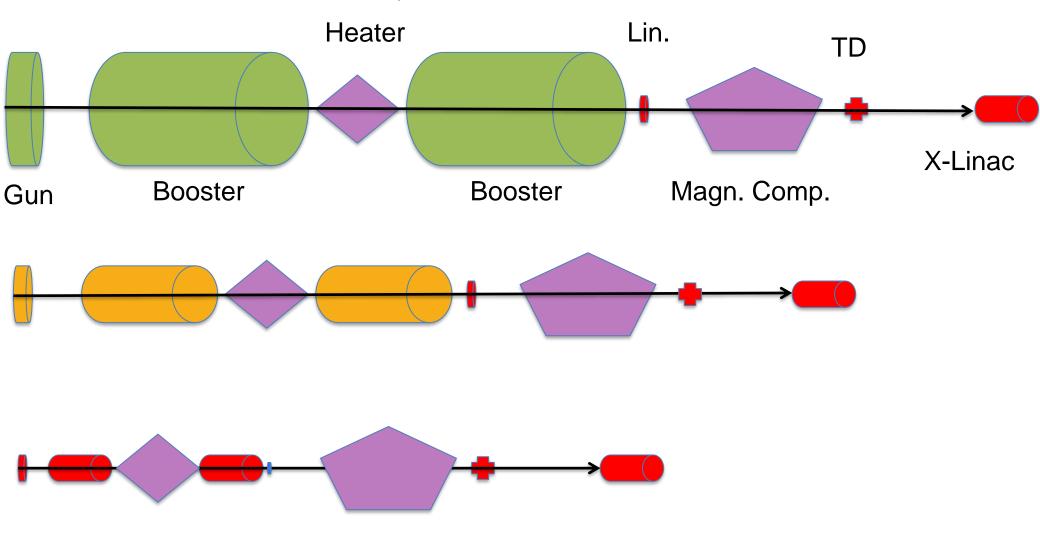
(task leaders institutes in **bold**)

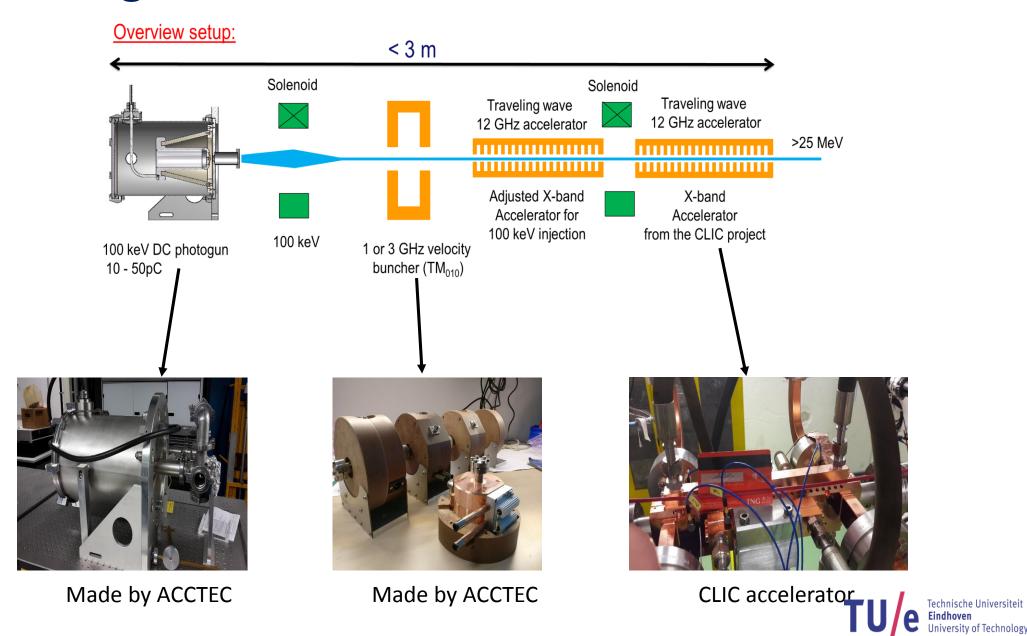

- Task 3.1 Gun Design (RF, Solenoid, Cathode, Laser, Diagnostics) => D3.1 M18 => D3.4 M36 S-Band Gun RF Design (CNRS + IASA+UAIAT-INFN+ALBA) a) b) C-Band Gun RF Design (INFN +IASA+Sapienza) X-Band Gun RF Design (CSIC-IFIC + UAIAT+ Sapienza) c) d) DC Gun Design (TU/e) e) Laser/Photocathode (IASA+CNRS+INFN) Task 3.2 - Compressor Design (Velocity Bunching, Magnetic Chicane)) => D3.2 M18 => D3.4 M36 S-Band Velocity Bunching (TU/e + IASA+ALBA) a) b) C-Band Velocity Bunching (INFN +IASA+TU/e) c) X-Band Velocity Bunching (Sapienza+CERN+IASA+INFN) d) Magnetic Compressor (**ST** + CERN+INFN+CNRS)
- Task 3.4 : RF Linearizer Design => D3.2 M18 => D3.3 M36


Task 3.3 – X-Band Transverse RF Deflector (Sapienza+ IASA+) => D3.3 M36

- a) X-Band RF Linearizer Design (Sapienza)
- b) K-Band RF Linearizer Design (ULANC +Sapienza)
- c) Passive linearizer (CNRS)

Configurations with Velocity Bunching


S-band, C-band, X-band, K-band



Configurations with Magnetic Compressor

S-band, C-band, X-band, K-band

DC gun

https://conferences.pa.ucla.edu/hbb-2019/index.html

"High Brightness Beam Physics"

7-11 April 2019 Crete – Greece

Thanks for your collaboration

