

REVIEW OF THE BASELINE RF MODULE DESIGN AND HIGH REPETITION RATE OPTIONS

David Alesini (INFN-LNF, Frascati)

with the contribution of Marco Diomede and Alessandro Gallo

and on behalf of the LNF EUPRAXIA@SPARC_LAB and XLS study group

XLS Midterm Meeting, Helsinki, Finland, 1-4 July 2019

ACCELERATING STRUCTURE OPTIMIZATION

A numerical tool able to calculate the main structure parameters (effective shunt impedance, modified Poynting vector, E_{acc} field profile) with an arbitrary cell-by-cell iris modulation along the structure itself has been developed (*M. Diomede et al., j.nima.2018.01.032, (2018)*). A linear tapering of the cell irises has been adopted.

Accelerating Voltage: V_a

Klystron output power : P_K

Effective shunt impedance : $R_s = \frac{V_a^2}{P_{\nu}(t=0)L_s} \left[\frac{\Omega}{m}\right]$

Structure with linear iris tapering

COUPLER DESIGN

- ⇒ We considered a **z-type coupler** because of its compactness with respect to the waveguide and mode launcher ones.
- \Rightarrow **Dual feed** allows to completely avoid the dipole magnetic field component.
- ⇒ Racetrack geometry has been implemented in order to compensate the residual quadrupole field components.
- ⇒ The calculated **pulsed heating** on the input coupler is **<15** °C (in the 65 MV/m case), the obtained **reflection coefficient** is **<−30 dB**.

CONCEPTUAL LAYOUT OF THE ACCELERATING Isitute Nazionale di Fisica Nucleare MODULE

The RF module is then made up of 4 TW structures fed by 1 klystron with 1 SLED.

ACCELERATING STRUCTURE AND MODULE: PARAMETERS

Parameter	Value
Frequency [GHz]	11.9942
RF pulse [μs]	1.5
Phase advance per cell [rad]	2π/3
Shunt impedance R [MΩ/m]	90-131
Effective shunt Imp. R _s [M Ω /m]	387
Group velocity v _g [%]	4.7-1.0
P _{out} /P _{in}	0.215
Filling time [ns]	144
Number of cells per structure	108
Unloaded SLED Q-factor Q_0	180000
External SLED Q-factor Q _E	23000
# structures per module N _m	4
Module active length L _{mod} [m]	3.6

	Rep. rate [Hz]	
	100	1000
Average gradient <g> [MV/m]</g>	65	22.7
Klystron power per module P _K [MW]	39	4.8
Av. diss. power 100 Hz [kW]	1.1	1.34
Peak input power per structure [MW]	68	8.3
Av. Input power per structure [MW]	44	5.4
Module energy gain [MeV]	234	81.7

Parameter	Value
Average iris radius <a>	3.5
Iris radius input-output [mm]	4.3-2.7
Structure length L _s [m]	0.9
Accelerating cell length [mm]	8.332

HIGH REPETITION RATE OPERATION

The high repetition rate operation is limited by two effects:

The **main limitation** for the rep rate increasing comes from the **power released** on the **tube collector** P_{coll} which can **not exceed** a **limit value** corresponding to the **nominal working point** (with some margin).

The klystron operational *rep rate* can be *increased* at expenses of the *saturated RF power* (by decreasing the tube HV) and/or the *pulse duration*

The amount of rep rate increase obtainable by **reducing the HV** and the RF saturation power $P_{RF_{sat}}$ is limited by the **tube efficiency decrease**.

The **average dissipate power in the structure**: is someting manageable.

The amount of rep rate increase obtained by **reducing the pulse duration** depends very much on the actual value of the **dead time** τ_{trans} , which is a **characteristics of the modulator**.

HIGH REPETITION RATE 1st SCENARIO: PULSE SHORTENING WITH HIGH PEAK POWER KLYSTRONS

- Accelerating gradient and Linac energy reduced by a factor 2.2 @ 220 Hz rep rate;
- The SLED has to be bypassed;
- Klystron operated always at its nominal working point (good!);
- Max rep rate very much dependent on modulator dead time τ_{trans}

HIGH REPETITION RATE 2nd SCENARIO: LOW POWER HIGH REP. RATE KLYSTRONS

Canon E37113 klystrons Scandinova solid state modulators

Parameters	Specifications	units
	E37113	
RF Frequency	11.9942	GHz
Peak RF power	6	MW
RF pulse length	5	μs
Pulse repetition rate	400	Hz
Klystron voltage	150	kV
Micro perveance	1.5	

6 MW, 1.5 μ s, 1 kHz operation probably possible

- 1 kHz rep rate capability, with linac energy up to ≈ 35% of the max value;
- Switching or combining 2 sources would preserve high gradient at low rep rate;
- If source combination is possible, gradients > 30 MV/m available at rep rates ≤ 250 Hz;
- CPI will probably announce a new tube capable of delivering 10 MW, 1.5 μs, 1 kHz (gradient of 30 MV/m)

HIGH REP. RATE LINAC: 1st OPTION

LINAC 1	LINAC 2	Parameter	LINAC 1	LINAC 2	TOTAL
X-BAND X-BAND	Number of structures	92	60	152	
		Number of modules	23	15	38
CANON KLYSTRON	Number of klystrons	23 (Canon)	15 (CPI)	38	
	Linac active length [m]	83	54	137	
	<e<sub>acc> per struct. [MV/m]</e<sub>	22.7	65	-	
	Rep. rate [Hz]	1000	100	-	
	Energy gain per module [MeV]	81.7	234	-	
	Max. Energy gain [MeV]	1880	3510	5390	
		⇒ SXR@ 1 kHz ⇒ HXR@ 100 H	Z		

 $<E_{acc}> = 22.7 \text{ MV/m} @ 1 \text{ kHz} < E_{acc}> = 65 \text{ MV/m} @ 100 \text{ Hz}$

 \Rightarrow SXR@ 900 Hz and HXR@ 100 Hz can run in parallel

HIGH REP. RATE LINAC: 2nd OPTION

LINAC 1	LINAC 2	Parameter	LINAC 1	LINAC 2	TOTAL
X-BAND	X-BAND	Number of structures	64	60	124
		Number of modules	16	15	31
CANON		Number of klystrons	32 (Canon)	15 (CPI)	47
KLYSTRON	λ.	Linac active length [m]	58	54	112
		<e<sub>acc> per struct. [MV/m]</e<sub>	32.1	65	-
	KLYSTRON	Rep. rate [Hz]	1000	100	-
	•	Energy gain per module [MeV]	115.6	234	-
		Max. Energy gain [MeV]	1850	3510	5360
	SLED	⇒ SXR@ 1 kHz ⇒ HXR@ 100 H	Z		

<E_{acc}> = 32.1 MV/m @ 1 kHz <E_{acc}> = 65 MV/m @ 100 Hz

⇒ SXR@ 900 Hz and HXR@ 100 Hz can run in parallel

HIGH REP. RATE LINAC: 3rd OPTION

LINAC	Parameter	LINAC
X-BAND X-BAND	Number of structures	92
	Number of modules	23
CANON KLYSTRON	Number of klystrons	23 (Canon) + 23 (CPI)
	Linac active length [m]	83
	<e<sub>acc> per struct. [MV/m]</e<sub>	22.7 (@1 kHz), 65 (@ 100 Hz)
	Rep. rate [Hz]	100-1000
	Energy gain per module [MeV]	81.7 (@1 kHz), 234 (@ 100 Hz)
	Max. Energy gain [MeV]	1880 (@1 kHz), 5380 (@ 100 Hz)
	⇒ SXR@ 1 kHz	

<E_{acc}> = 22.7 MV/m @ 1 kHz <E_{acc}> = 65 MV/m @ 100 Hz

- \Rightarrow SXR@ 1 kHz
- \Rightarrow HXR@ 100 Hz
- \Rightarrow SXR and HXR CANNOT run in parallel!

CONCLUSIONS

- 1) Accelerating structure electromagnetic design completed
- 2) Basic module with 4 structures fed in parallel. NB The Compact Light module is now the same of the EuPRAXIA@SPARC_LAB module (originally shorter because of the smaller iris radius).
- **3)** Three different options for the linac have been proposed. They allow SXR operation @ 1 kHz and HXR operation at 100 Hz
- 4) Next steps:
 - refinement of input/output coupler design
 - cooling system design
 - mechanical drawing of the accelerating structure

...THANK YOU FOR YOUR ATTENTION!

Thank you also to Dr. Toshiro Anno (Canon) and CPI Company for data/information and useful suggestions on Klystron high rep. Rate operation