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e D5.1, section 2: PM undulators

« What have we done?

— For each subcategory of PM undulators (out-of-vacuum, in-vacuum,
and cryoundulators)

= We have prepared a short introduction, explaining some generalities
about the technology

= We have established the application of that technology (as per today or
foreseen in the near future) in X-ray FELs

=  We have performed a SWOT analysis

=  We have identified some recent developments that can be interesting in
the context of CompactLight project
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« D5.1, section 2: Out-of-vacuum devices

Table 4: Out-of-vacuum PM devices in X-ray FEL facilities.

Facility type mingap period max K length # Ref
[mm] [mm] [m]

LCLS

main line planar hybrid 6.8 (fixed) 30.0 3.5 3.4 33 [29]

afterburner Delta 6.6 32.0 3.37 3.2 1 [30]

LCLS I

HXR planar hybrid 7.2 (hor.) 26.0 =244 3.4 32 [31]

SXR planar hybrid 7.2 (ver.) 39.0 =543 3.4 21 [31]

SXR afterburner Delta Il ? 440 =514 3.3 3 [32]

FLASH I planar hybrid 9.0 31.4 2.87 25 12 [33]

European XFEL

SASE 1/2 planar hybrid 10.0 40.0 3.9 5 35 [34]

SASE 3 planar hybrid 10.0 68.0 9.0 5 21 [34]

SASE 3 afterbur. APPLE-X 10.0 90.0 7.8 2 4 [35]

FERMI@Elettra

FEL-1 APPLE-II 10 55.2 - 2.4 6 [36]

FEL-2 APPLE-II 10 34.8 - 2.4 9 [37]

SwissFEL

Athos APPLE-X 6.5 38.0 3.8 2 16 [10]

PAL-XFEL

HXU planar hybrid 8.3 26.0 1973 5 20 [38]

SXU planar hybrid 9.0 35.0 3.321 5 7 [38]

No devices with period length 4, < 25mm
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« D5.1, section 2: Out-of-vacuum devices SWOT

STRENGTH ES WEAKNESSES

Technology highly mature Possible magnets’ demagnetization
* Many active and knowledgeable groups * Minimum gap limited by the dimensions of the
* Low cost vacuum chamber
* Low energy consumption « As the magnetic field decreases exponentially
» Simple associated infrastructure with g/A,, limitation on smaller periods
+ Simpler mechanical and ultra-high vacuum solutions  Difficult commissioning due to narrow vacuum
» Good accessibility for magnetic measurements chambers

» Existence of automated assembly and field tuning procedures
* Availability of different schemes providing full control on the
polarization of the emitted light

OPPORTUNITIES THREADS
New assembly techniques for PPM Magnetic field performances not satisfying
* Application of improved permanent magnets CompactLight requirements
* Development of automated procedures for serial production « Spare PM blocks needed in case of long term
* Application of cast/extruded material for cost optimization on magnets’ demagnetization

serial production

* Adoption of compact cost-saving architectures

* Further development of aggressive design (APPLE-X, Delta
II...) for elliptical undulators

*  Optimum exploitation of round and small diameter vacuum
chambers

» Exploration of alternative driving systems

* Development of a technology consistent with the increasing
public sensitivity to environmental issues
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D5.1, section 2: Out-of-vacuum devices advances
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e Db5.1, section 2: In-vacuum devices

Table 6: In-vacuum PM devices in X-ray FEL facilities.

Facility type mingap period max K length # Ref
[mm]  [mm] [m]

SACLA planar hybrid 3.5 18 2.2 50 18 [53]

SwissFEL

Aramis planar hybrid 3.2 15 1.8 40 13 [54]

SXFEL

SASE line  planar hybrid 4.0 16 1.6 40 10 |[55]

out-vacuum backing beam

_ linear guide

cooling channel

|I =, ' L L
permanent magnets RF traésilion
metal foil for impedence reduction

T. Tanaka et al., In-vacuum undulators, Proceedings of FEL2005, Stanford, California, 2005, p.370
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« D5.1, section 2: In-vacuum devices SWOT

STRENGTHES

Technology mature

Well-known mechanical and ultra-high vacuum
solutions

Enhanced field strength

Less limitation on smaller periods

Easier initial commissioning due the absence of
the inner vacuum chambers

WEAKNESSES

Possible magnets’ demagnetization

More complex mechanical and ultra-vacuum
solutions

Schemes providing full control on the
polarization of the emitted light under
development

Accessibility for magnetic measurements more
difficult

Required the baking of the magnetic structure

OPPORTUNITIES

Application of improved permanent magnets
Smaller periods devices

Further development of variable polarization
IVUs

Further development of magnetic measurement
benches for closed gap undulators

THREADS

Spare PM blocks needed in case of long term
magnets’ demagnetization

Full-scale device with variable polarization not
available in the short term
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 D5.1, section 2: cryogenic PM devices

Table 8: Non-exhaustive list of full-scale cryogenic PM devices in operation or being manufac-

tured.
Facility material mingap period B, K,, length Temperature Year Ref
[mm] [mm] [Tesla] [m] [K]
ESRF NdFeB 6.0 18.0 0.88 1.48 2.0 1650-175 2008 [70]
SLS NdFeB 3.0 14.0 1.186 1.551 1.7 135 2000 [72]
Diamond NdFeB 5.0 17.7 1.04 1.72 2.0 155 2010 [80]
SOLEIL PrFeB 5.5 18.0 1.152 1.4 2.0 77 2011 [24]
SOLEIL PrFeB 5.5 18.0 1.152 1.4 2.0 77 2015 [78]
SOLEIL PrFeB 5.5 18.0 1.152 1.4 2.0 77 2017 [78]
ESRF (Pr,Nd)FeB 5.0 14.4 1.0 1.35 2.0 80 2016 [81]
SSRF NdFeB 6.0 20.0 1.03 1.82 1.6 140 2016 [82]
SSRF PrFeB 6.0 18.0 0.81 1.53 2.6 80 2017 [82]
BESSY-l (Pr,Nd)FeB 5.5 17.0 1.17 1.85 1.6 80 2018 [83]
SOLEIL PrFeB 3.0 15.0 1.735 2.34 3.0 77 — [78]
TPS PrFeB 3.0 15.0 1.77 2.48 2.0 77 — [69]
Diamond  (Pr,Nd)FeB 5.0 17.6 1.20 1.897 2.0 77 — [84]

12
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D5.1, section 2: cryogenic

PM devices SWOT

STRENGTHES

Lowest period achievable

Enhanced field strength

Improved radiation resistance

No baking of the magnetic structure needed at
high temperature

Higher coercive force of the magnets

More resistant to demagnetization effects
Higher magnets’ remanence

Increased undulators’ peak field

WEAKNESSES

« Technology not mature

* Few active and knowledgeable groups

* Minimum industrial involvement

* More expensive

« Challenging magnetic field characterization

« Complex mechanical, ultra-vacuum and cryo
solutions

» No schemes providing full control on the
polarization of the emitted

« Magnetic measurements more difficult and
under development

OPPORTUNITIES

Application of improved permanent magnets
Smaller periods devices

Longer durability of magnetic structures

Higher performance achievable

Further developments of magnetic measurement
benches for closed gap undulators

More stable operation due to large cooling
capacity

Possible application for future FEL

THREADS
» Serial productions are far to being feasible

* Full-scale device with variable polarization not

available

13
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« Db5.1, section 2: cryogenic PM devices advances
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CPMU

Price

Complexity
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Field strength

Radiation resistance

Degree of maturity

Polarization control
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D5.1, section 2: scaling laws

Table 10: Scaling law parameters for the magnetic field (either peak or effective value) as a

B=aexpl|b

function of the gap over period ratio for different types of PM undulators.

g

Ay

+C
Ay

Type Material Field a b c Range (x=g/4,) Ref
planar PM ver. field SmCo (B, =1.1T) B 187 —3.01 —0.14 03=x<3 D5 1] T\
planar PM ver. field NdFeB (B, = 1.25T) B 213 -3.01 —0.14 03<x<3 [D5_1]
planar PM ver. field NdFeB (B, = 1.42T) B, 242 -3.01 —0.14 03<x<3 [Ds_1]
CPMU planar PM ver. field PridFeB (B, =1.7T) B, 289 —3.01 —0.14 03=x<3 [D5_1]
Hybrid SmCo (B, =1.1T) B 3.50 —4.75 0.89 03=x<3 [D5_1] ; ; ;
Fybrid R 12T Bl S8 s 0@ 03<a<a  Dan Dedicated simulations
Hybrid NdFeB (B, = 1.42T) B... 3.70 —4.18 0.49 03=x<3 [D5_1] i i
CPMU Hybrid PridFeB (B, = 1.7T) H::N: 3.88 —3.87 0.26 03<x<3 [D5_1] for th|S prOJeCt
APPLE-II ver. field NdFeB (B, = 1.42T) B, 176 —2.62 —0.55 03=x<3 [D5_1]
APPLE-Il circular NdFeB (B, = 1.42T) Booaw 136 —2.98 —0.28 03=x<=3 [D5_1]
APPLE-X ver. field NdFeB (B, = 1.42T) B 325 —4.11 0.35 03=x<3 [D5_1]
APPLE-X circular NdFeB (B, = 1.42T) Bpegr  2.41 —4.27 0.40 03<x<3 [D5_1]
planar PM ver. field NdFeB B, 2076 324 0 01=x<=1 [90]
planar PM har. field NdFeB B 2.400 —5.69 1.46 0l<x=1 [90]
planar PM circular NdFeB B, 1614 467 0.62 01=x=1 [90]
APPLE-II ver. field NdFeB Bpw 176 =277 —0.37 na [91]
APPLE-II hor. field NdFeB Boew 222 —5.19 0.88 n‘a [91]
APPLE-I circular NdFeB B 154 —4.46 0.43 n'a [91]
Delta ver./hor. field NdFeB (B, =1.26T) Broar 1.96 —0.82 —3.31 0.2 <x <032 [9]
Delta circular field NdFeB (B, =1.26T) B, 145 —1.28 —2.24 0.2 <x <032 [9]
Hybrid SmCo B, 333 —5.47 1.8 0.07T<x =07 [5] > i
Hybrid NdFeB/permendur Bsm 3.694 —5.068 1.520 0l=<x=l [o0] Data from Ilteratu re
Hybrid NdFeB (B, =1.1T) B 344 —5.08 1.54 0.07T <x=<07 [92]
Hybrid NdFeB (B, = 1.3T) Boeat 43 —6.45 1.00 0.04 =x <02 [92]
Hybrid SmCo (B, = 1.12T) B 294 —4.62 1.37 0.1 <x <06 [93]
Hybrid NdFeB (B, = 1.22T) B, 3276 451 1.20 0.1 <x <06 [93]
CPMU hybrid NdFeB (B, = 1.5T @150K) Bpege 3121 3204  —0.193 02=<x=<06 [27]
CPMU hybrid PrreB (B, = 1.6TT @77K) B,.. 3198 3062 0332 0.2 <x <06 [27] Dy
CPMU hybrid (Nd,Pr)FeB (B, = 1.62T @77K) B, 3177 3111 0495 0.14 =x =08 [67]
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PM undulator design: next steps

Define a balance between the different driving conditions:

— Compactness

— Feasibility

— Cost

— State of the art

— Aggressive solutions
Previous balance will have an impact on parameters such
as minimum gap value, usage of in-vacuum/out-of-vacuum

solutions, configuration for variable polarization devices,
etc.

Look for two or three design alternatives for each energy
range

17
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Thank you!

CompactLight@elettra.eu - www.CompactLight.eu
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