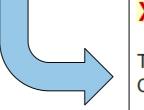


Deliverable 5.1 – Section 2 – PM undulators Jordi Marcos (ALBA) on behalf of WP5-PM Task

• WP5 deliverables

Description of deliverables

D5.1: A report comparing the different technologies for the undulator, as an input for WP2, (R, PU, M18). D5.2: Design Report of the undulator to be included in the main deliverable of CompactLight, (R, PU, M36).


D5.1 : Technologies for the CompactLight undulator [18]

Review report comparing the different technologies for the CompactLight undulator.

D5.2 : Conceptual Design Report of the undulator [36]

Design Report of the undulator to be included in the main deliverable of CompactLight

XLS Deliverable D5.1

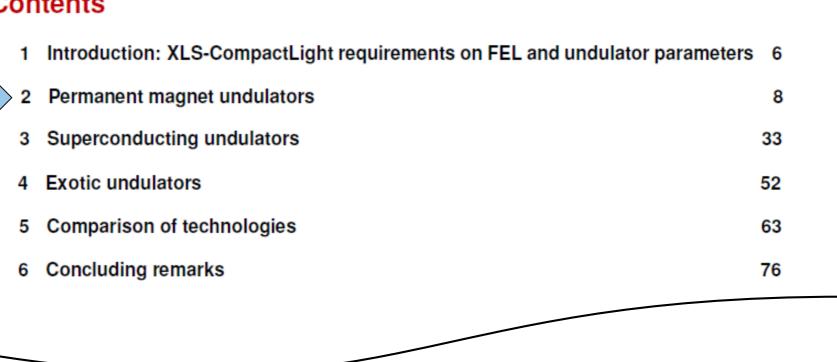
Technologies for the CompactLight undulator

F. Nguyen¹⁾*, A. Aksoy[†], A. Bernhard[‡], M. Calvi[§], J.
A. Clarke[¶], H. M. Castañeda Cortés[¶], A. W. Cross[∥],
G. Dattoli*, D. Dunning[¶], R. Geometrante^{**},
J. Gethmann[‡], M. Kokole^{**}, J. Marcos^{††}, Z. Nergiz^{*},
F. Perez^{††}, A. Petralia^{*}, S. C. Richter[‡], ^{‡‡}, T. Schmidt[§],
D. Schoerling^{‡‡}, N. Thompson[¶], K. Zhang[§], L. Zhang[∥],
D. Zhu^{***}

On behalf of the CompactLight Partnership

¹Corresponding author: lederico.nguyen@enea.it

CompactLight@elettra.eu XLS


www.CompactLight.eu

D5.1 table of contents

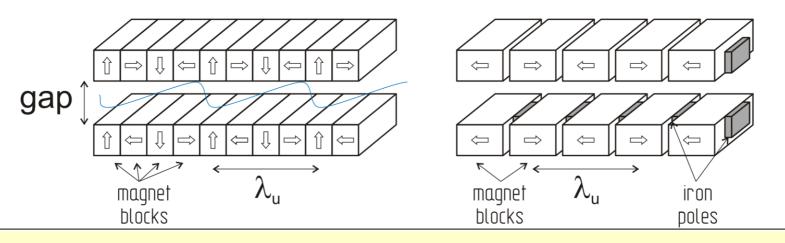
Contents

• D5.1, section 2: PM undulators

Page 8

PM Undulators

2 Permanent magnet undulators


Main editor: J. Marcos Contributors: R. Geometrante, M. Kokole, A. Petralia

Contents	2	Per	manent magnet undulators	8
	Ν	2.1		
[>	2.2	<u>Out-of-vacuum</u>	13
	V		Out-of-vacuum	13
			2.2.2 Opportunities and challenges	
	N		2.2.3 Advances in science and technology to meet XLS requirements	15
]	$ \longrightarrow $	2.3	<u>In-vacuum</u>	20
			2.3.1 Status (strengths and weaknesses)	22
			2.3.2 Opportunities and challenges	
	N		2.3.3 Advances in science and technology to meet XLS requirements	24
[$ \longrightarrow $	2.4	Cryogenic permanent magnet	26
			2.4.1 Status (strengths and weaknesses)	28
			2.4.2 Opportunities and challenges	
	N		2.4.3 Advances in science and technology to meet XLS requirements	
[2.5	Field scaling for PM undulators	

- D5.1, section 2: PM undulators
 - What have we done?
 - For each subcategory of PM undulators (out-of-vacuum, in-vacuum, and cryoundulators)
 - We have prepared a short introduction, explaining some generalities about the technology
 - We have established the application of that technology (as per today or foreseen in the near future) in X-ray FELs
 - We have performed a SWOT analysis
 - We have identified some recent developments that can be interesting in the context of CompactLight project

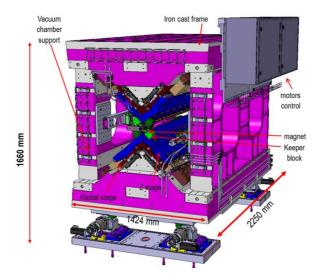
• D5.1, section 2: Out-of-vacuum devices

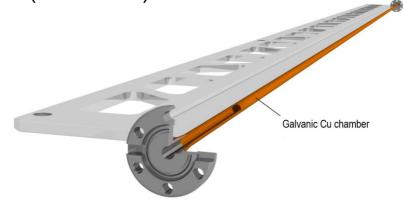
Table 4: Out-of-vacuum PM devices in X-ray FEL facilities.

Facility	type	min gap	period	max K	length	#	Ref
		[mm]	[mm]		[m]		
LCLS							
main line	planar hybrid	6.8 (fixed)	30.0	3.5	3.4	33	[29]
afterburner	Delta	6.6	32.0	3.37	3.2	1	[30]
LCLS II							
HXR	planar hybrid	7.2 (hor.)	26.0	>2.44	3.4	32	[31]
SXR	planar hybrid	7.2 (ver.)	39.0	>5.43	3.4	21	[31]
SXR afterburner	Delta II	?	44.0	>5.14	3.3	3	[32]
FLASH II	planar hybrid	9.0	31.4	2.87	2.5	12	[33]
European XFEL							
SASE 1/2	planar hybrid	10.0	40.0	3.9	5	35	[34]
SASE 3	planar hybrid	10.0	68.0	9.0	5	21	[34]
SASE 3 afterbur.	APPLE-X	10.0	90.0	7.8	2	4	[35]
FERMI@Elettra							
FEL-1	APPLE-II	10	55.2	_	2.4	6	[36]
FEL-2	APPLE-II	10	34.8	_	2.4	9	[37]
SwissFEL							
Athos	APPLE-X	6.5	38.0	3.8	2	16	[10]
PAL-XFEL							
HXU	planar hybrid	8.3	26.0	1.973	5	20	[38]
SXU	planar hybrid	9.0	35.0	3.321	5	7	[38]
Ne devie				_			

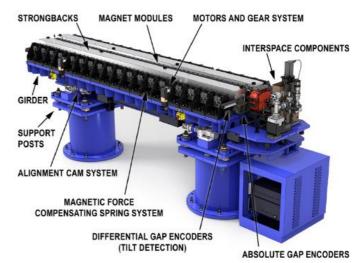
No devices with period length $\lambda_u < 25$ mm

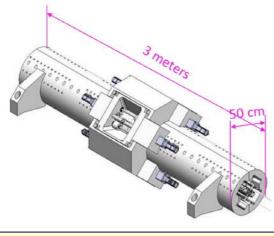
• D5.1, section 2: Out-of-vacuum devices SWOT


 STRENGTHES Technology highly mature Many active and knowledgeable groups Low cost Low energy consumption Simple associated infrastructure Simpler mechanical and ultra-high vacuum solutions Good accessibility for magnetic measurements Existence of automated assembly and field tuning procedures Availability of different schemes providing full control on the polarization of the emitted light 	 WEAKNESSES Possible magnets' demagnetization Minimum gap limited by the dimensions of the vacuum chamber As the magnetic field decreases exponentially with <i>g</i>/λ_u, limitation on smaller periods Difficult commissioning due to narrow vacuum chambers
 OPPORTUNITIES New assembly techniques for PPM Application of improved permanent magnets Development of automated procedures for serial production Application of cast/extruded material for cost optimization on serial production Adoption of compact cost-saving architectures Further development of aggressive design (APPLE-X, Delta II) for elliptical undulators Optimum exploitation of round and small diameter vacuum chambers Exploration of alternative driving systems Development of a technology consistent with the increasing public sensitivity to environmental issues 	 THREADS Magnetic field performances not satisfying CompactLight requirements Spare PM blocks needed in case of long term magnets' demagnetization



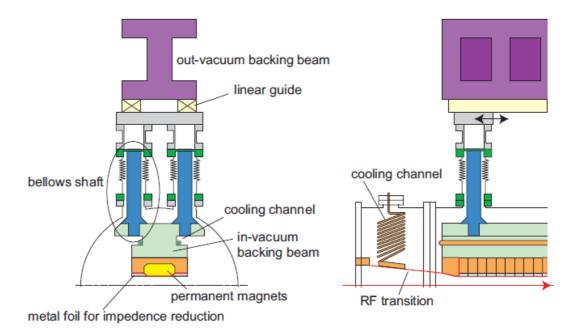
D5.1, section 2: Out-of-vacuum devices advances


Apple X undulator (SwissFEL)


Small aperture galvanic Cu chamber (SwissFEL)

Horizontal gap undulator with force compensation (LCLS II)

Compact Apple X undulator (MaxLab)

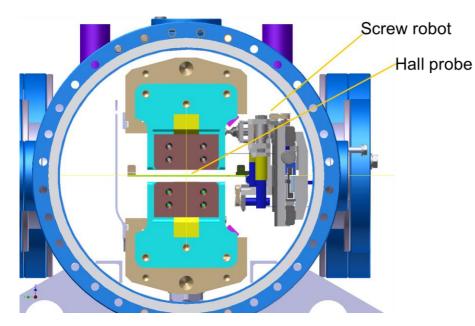


• D5.1, section 2: In-vacuum devices

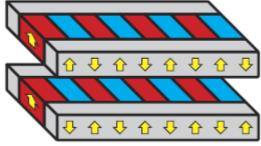
				-			
Facility	type	min gap	period	max K	length	#	Ref
		[mm]	[mm]		[m]		
SACLA	planar hybrid	3.5	18	2.2	5.0	18	[53]
SwissFEL							
Aramis	planar hybrid	3.2	15	1.8	4.0	13	[54]
SXFEL							
SASE line	planar hybrid	4.0	16	1.6	4.0	10	[55]

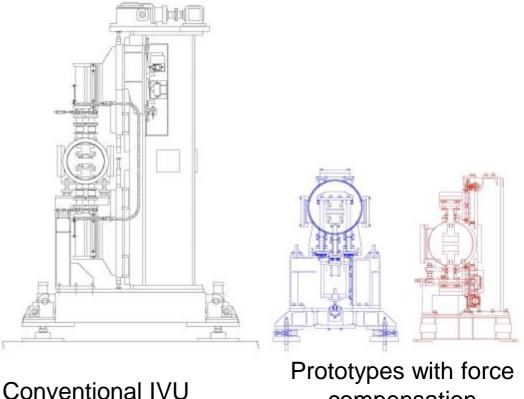
Table 6: In-vacuum PM devices in X-ray FEL facilities.

T. Tanaka et al., *In-vacuum undulators*, Proceedings of FEL2005, Stanford, California, 2005, p.370


•	D5.1,	section	2:	In-vacuum	devices	SWOT
---	-------	---------	----	-----------	---------	------

 STRENGTHES Technology mature Well-known mechanical and ultra-high vacuum solutions Enhanced field strength Less limitation on smaller periods Easier initial commissioning due the absence of the inner vacuum chambers 	 WEAKNESSES Possible magnets' demagnetization More complex mechanical and ultra-vacuum solutions Schemes providing full control on the polarization of the emitted light under development Accessibility for magnetic measurements more difficult Required the baking of the magnetic structure
 OPPORTUNITIES Application of improved permanent magnets Smaller periods devices Further development of variable polarization IVUs Further development of magnetic measurement benches for closed gap undulators 	 THREADS Spare PM blocks needed in case of long term magnets' demagnetization Full-scale device with variable polarization not available in the short term




D5.1, section 2: In-vacuum devices advances

Undulators with force compensation MMM (Multipole Monolithic Magnet) (SPring-8)

In-situ measurement and automated correction (SwissFEL)

compensation

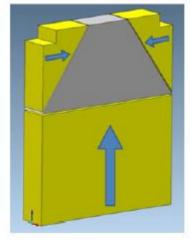
• D5.1, section 2: cryogenic PM devices

Table 8: Non-exhaustive list of full-scale cryogenic PM devices in operation or being manufactured.

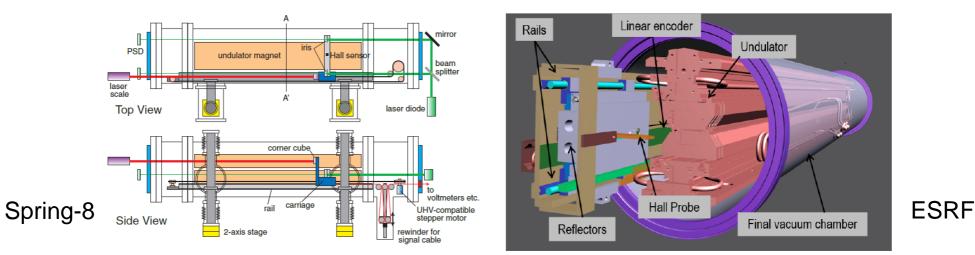
Facility	material	min gap [mm]	period [mm]	B _{peak} [Tesla]	K _{max}	length [m]	Temperature [K]	Year	Ref.
ESRF	NdFeB	6.0	18.0	0.88	1.48	2.0	150-175	2008	[70]
SLS	NdFeB	3.0	14.0	1.186	1.551	1.7	135	2009	[72]
Diamond	NdFeB	5.0	17.7	1.04	1.72	2.0	155	2010	[80]
SOLEIL	PrFeB	5.5	18.0	1.152	1.94	2.0	77	2011	[24]
SOLEIL	PrFeB	5.5	18.0	1.152	1.94	2.0	77	2015	[78]
SOLEIL	PrFeB	5.5	18.0	1.152	1.94	2.0	77	2017	[78]
ESRF	(Pr,Nd)FeB	5.0	14.4	1.0	1.35	2.0	80	2016	[81]
SSRF	NdFeB	6.0	20.0	1.03	1.92	1.6	140	2016	[82]
SSRF	PrFeB	6.0	18.0	0.91	1.53	2.6	80	2017	[82]
BESSY-II	(Pr,Nd)FeB	5.5	17.0	1.17	1.85	1.6	80	2018	[83]
SOLEIL	PrFeB	3.0	15.0	1.735	2.34	3.0	77		[78]
TPS	PrFeB	3.0	15.0	1.77	2.48	2.0	77		[69]
Diamond	(Pr,Nd)FeB	5.0	17.6	1.20	1.97	2.0	77		[84]

• D5.1, section 2: cryogenic PM devices SWOT

 STRENGTHES Lowest period achievable Enhanced field strength Improved radiation resistance No baking of the magnetic structure needed at high temperature Higher coercive force of the magnets More resistant to demagnetization effects Higher magnets' remanence Increased undulators' peak field 	 WEAKNESSES Technology not mature Few active and knowledgeable groups Minimum industrial involvement More expensive Challenging magnetic field characterization Complex mechanical, ultra-vacuum and cryo solutions No schemes providing full control on the polarization of the emitted Magnetic measurements more difficult and under development
 OPPORTUNITIES Application of improved permanent magnets Smaller periods devices Longer durability of magnetic structures Higher performance achievable Further developments of magnetic measurement benches for closed gap undulators More stable operation due to large cooling capacity Possible application for future FEL 	 THREADS Serial productions are far to being feasible Full-scale device with variable polarization not available



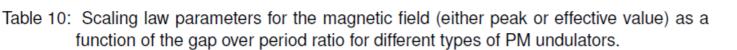
• D5.1, section 2: cryogenic PM devices advances


Compound poles and short period ($\lambda_u = 9$ mm) devices

(HZB)

In-situ measurement benches at low temperature

• D5.1, section 2: summary

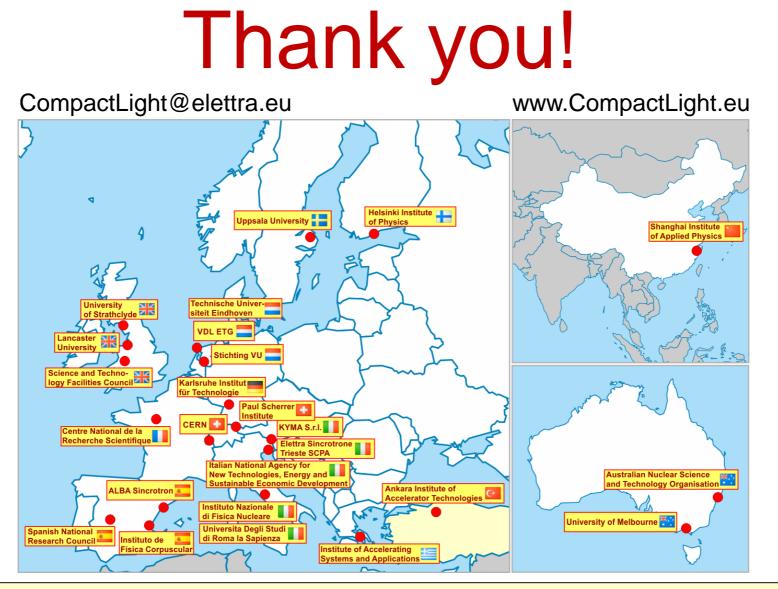

	Out-of-vacuum	Room Temp. IVU	CPMU
Price	<u>.</u>	e	8
Complexity	O	e	8
Period	(e	O
Field strength	8	e	<u>.</u>
Radiation resistance	e	8	O
Degree of maturity	O	.	e
Polarization control	<u>.</u>	8	(

 $B = a \exp \left| b \left(\frac{g}{\lambda_u} \right) + c \left(\frac{g}{\lambda_u} \right)^2 \right|$

D5.1, section 2: scaling laws

Туре	Material	Field	а	b	с	Range ($x = g/\lambda_u$)	Ref	
planar PM ver. field	SmCo ($B_r = 1.1 \text{ T}$)	B_{peak}	1.87	-3.01	-0.14	0.3 < x < 3	[D5_1]	
planar PM ver. field	NdFeB ($B_r = 1.25 \text{ T}$)	Bpeak	2.13	-3.01	-0.14	0.3 < x < 3	[D5_1]	
planar PM ver. field	NdFeB ($B_r = 1.42 \mathrm{T}$)	Bpeak	2.42	-3.01	-0.14	0.3 < x < 3	[D5_1]	
CPMU planar PM ver. field	$PrNdFeB(B_r = 1.7 T)$	Bpeak	2.89	-3.01	-0.14	0.3 < x < 3	[D5_1]	
Hybrid	SmCo ($B_r = 1.1 \text{ T}$)	Bpeak	3.50	-4.75	0.89	0.3 < x < 3	[D5_1]	Dedicated cimulations
Hybrid	NdFeB ($B_r = 1.25 \text{ T}$)	Bpeak	3.60	-4.45	0.67	0.3 < x < 3	[D5_1]	Use Dedicated simulations
Hybrid	NdFeB ($B_r = 1.42 \text{T}$)	B	3.70	-4.18	0.49	0.3 < x < 3	[D5_1]	(for this project
CPMU Hybrid	$PrNdFeB(B_r = 1.7 T)$	Bpeak	3.88	-3.87	0.26	0.3 < x < 3	[D5_1]	
APPLE-II ver. field	NdFeB ($B_r = 1.42 \text{T}$)	Bpeak	1.76	-2.62	-0.55	0.3 < x < 3	[D5_1]	
APPLE-II circular	NdFeB ($B_r = 1.42 \text{T}$)	Bpeak	1.36	-2.98	-0.28	0.3 < x < 3	[D5_1]	
APPLE-X ver. field	NdFeB ($B_r = 1.42 \text{T}$)	Bpeak	3.25	-4.11	0.35	0.3 < x < 3	[D5_1]	
APPLE-X circular	NdFeB ($B_r = 1.42 \text{ T}$)	Bpeak	2.41	-4.27	0.40	0.3 < x < 3	[D5_1]	
planar PM ver. field	NdFeB	Bpeak	2.076	-3.24	0	0.1 < x < 1	[90]	
planar PM hor. field	NdFeB	Bpeak	2.400	-5.69	1.46	0.1 < x < 1	[90]	
planar PM circular	NdFeB	Bpeak	1.614	-4.67	0.62	0.1 < x < 1	[90]	
APPLE-II ver. field	NdFeB	Bpeak	1.76	-2.77	-0.37	n/a	[91]	
APPLE-II hor. field	NdFeB	Bpeak	2.22	-5.19	0.88	n/a	[91]	
APPLE-II circular	NdFeB	Bpeak	1.54	-4.46	0.43	n/a	[91]	
Delta ver./hor. field	NdFeB ($B_r = 1.26 \text{ T}$)	Bpeak	1.96	-0.82	-3.31	0.2 < x < 0.32	[9]	
Delta circular field	NdFeB ($B_r = 1.26 \text{T}$)	Bpeak	1.45	-1.28	-2.24	0.2 < x < 0.32	[9]	
Hybrid	SmCo	Bpeak	3.33	-5.47	1.8	0.07 < x < 0.7	[5]	\geq Data from literature
Hybrid	NdFeB/permendur	Bpeak	3.694	-5.068	1.520	0.1 < x < 1	[90]	
Hybrid	NdFeB ($B_r = 1.1$ T)	Bpeak	3.44	-5.08	1.54	0.07 < x < 0.7	[92]	
Hybrid	NdFeB ($B_r = 1.3$ T)	Bpeak	4.3	-6.45	1.00	0.04 < x < 0.2	[92]	
Hybrid	SmCo ($B_r = 1.12$ T)	\dot{B}_{eff}	2.94	-4.62	1.37	0.1 < x < 0.6	[93]	
Hybrid	NdFeB ($B_r = 1.22 \text{ T}$)	Beff	3.276	-4.51	1.20	0.1 < x < 0.6	[93]	
CPMU hybrid	NdFeB ($B_r = 1.5$ T @150K)	Bpeak	3.121	-3.204	-0.193	0.2 < x < 0.6	[27]	
CPMU hybrid	PrFeB ($B_r = 1.67 \text{ T}$ @77K)	B	3.198	-3.062	-0.332	0.2 < x < 0.6	[27]	J
CPMU hybrid	$(Nd,Pr)FeB(B_r = 1.62 T @77K)$	B_{eff}	3.177	-3.111	-0.495	0.14 < x < 0.8	[67]	

Funded by the European Union



- PM undulator design: next steps
 - Define a balance between the different driving conditions:
 - Compactness
 - Feasibility
 - Cost
 - State of the art
 - Aggressive solutions
 - Previous balance will have an impact on parameters such as minimum gap value, usage of in-vacuum/out-of-vacuum solutions, configuration for variable polarization devices, etc.
 - Look for two or three design alternatives for each energy range

XLS Midterm Review Helsinki 1st-4th Jul 2019

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

