

www.CompactLight.eu

Superconducting undulators

Axel Bernhard, Jim Clarke, Marco Calvi, Julian Gethmann, Sebastian Richter, Daniel Schoerling, Kai Zhang

CompactLight@elettra.eu

XLS

European Union

Status of Superconducting Undulator Technolgies

Low Tem- Nb-Ti perature Nb ₃ Sn Beau High Tem- REBCO tape coils perature REBCO bulk stag- gered arrays REBCO stacked tape staggered arrays $\stackrel{*}{\hookrightarrow}$			Deam *
Nb ₃ Sn Beak High Tem- perature REBCO tape coils REBCO bulk stag- gered arrays REBCO stacked REBCO stacked tape tape staggered arrays	Low Tem-	Nb-Ti	
High Tem- perature REBCO bulk stag- gered arrays REBCO stacked tape staggered arrays	perature	Nb ₃ Sn	Beam
REBCO bulk stag- gered arrays REBCO stacked tape staggered arrays $\stackrel{e}{\rightarrow}$	High Tem- perature	REBCO tape coils	-
arrays		REBCO bulk stag- gered arrays REBCO stacked	x oo ant
		tape staggered arrays	$e^{-} \xrightarrow{4} \frac{4}{7}$

European Union

Conservative assumptions using properties of commercially available strands

3

4 5

8

9

3

5 6 7

gap g/mm

8

q

7

gap g/mm

gap g/mm

Funded by the

gap g/mm

Conservative assumptions using properties of commercially available strands

European Union

Assuming properties of most recently developed REBCO tapes + common vertical racetrack (VR) winding scheme

European Union

Results of 2-D FEM Calculations for planar SCUs

Additionally assuming a horizontal racetrack (HR) winding scheme

LTS

$$m{B}(\lambda_{\mathrm{u}},m{g})=m{c}_{1}\cdot(m{c}_{2}+m{c}_{3}\lambda_{\mathrm{u}}-m{c}_{4}\lambda_{\mathrm{u}}^{2}+m{c}_{5}\lambda_{\mathrm{u}}^{3})\exp\left(-\pi\left(m{c}_{6}rac{m{g}}{\lambda_{\mathrm{u}}}-m{0.5}
ight)
ight).$$

HTS tape coils

Funded by the

European Union

$$m{B}(\lambda_{\mathrm{u}},m{g})=m{c}_{1}\cdot(m{c}_{2}+m{c}_{3}\lambda_{\mathrm{u}}-m{c}_{4}\lambda_{\mathrm{u}}^{2}+m{c}_{5}\lambda_{\mathrm{u}}^{3})\exp\left(-\pi\left(m{c}_{7}rac{m{g}}{\lambda_{\mathrm{u}}}-m{c}_{6}
ight)
ight).$$

HTS staggered array

$$m{B}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight) = m{B}_{0}\exp\left[-m{a}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight) + m{b}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight)^{2}
ight]$$

•

Field Parametrizations

LTS

Funded by the

European Union

$$m{B}(\lambda_{\mathrm{u}},m{g})=m{c}_{1}\!\cdot\!(m{c}_{2}\!+\!m{c}_{3}\lambda_{\mathrm{u}}\!-\!m{c}_{4}\lambda_{\mathrm{u}}^{2}\!+\!m{c}_{5}\lambda_{\mathrm{u}}^{3})\exp\left(-\pi\left(m{c}_{6}rac{m{g}}{\lambda_{\mathrm{u}}}-m{0.5}
ight)
ight).$$

HTS tape coils
See talk of Neil Thompson, this session

$$B(\lambda_{u}, g) = c_{1} \cdot (c_{2} + c_{3}\lambda_{u} - c_{4}\lambda_{u}^{-} + c_{5}\lambda_{u}^{-}) \exp\left(-\pi \left(c_{7} \frac{1}{\lambda_{u}} - c_{6}\right)\right).$$

HTS staggered array

$$m{B}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight) = m{B}_{0}\exp\left[-m{a}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight) + m{b}\left(rac{m{g}}{\lambda_{\mathrm{u}}}
ight)^{2}
ight]$$

•

European Union

Funded by the

European Union

- Magnetic performance PMU<Nb-Ti <Nb₃Sn <REBCO

Weaknesses

- Cryogenics Complexity, Cost

Funded by the

European Union

- Magnetic performance PMU<Nb-Ti <Nb₃Sn <REBCO
- Technical maturity Cryogenics, Nb-Ti proven for storage rings

Weaknesses

- Cryogenics Complexity, Cost
- Technical maturity

 $Nb_3Sn > HTS \\$

Funded by the

European Union

- Magnetic performance PMU<Nb-Ti <Nb₃Sn <REBCO
- Technical maturity Cryogenics, Nb-Ti proven for storage rings
- Radiation hardness LTS \lesssim 30 MGy, limited by insulation material

Weaknesses

- Cryogenics Complexity, Cost
- Technical maturity

 $Nb_3Sn > HTS \\$

Funded by the

European Union

- Magnetic performance PMU<Nb-Ti <Nb₃Sn <REBCO
- Technical maturity Cryogenics, Nb-Ti proven for storage rings
- Radiation hardness LTS \lesssim 30 MGy, limited by insulation material
- Fixed gap

Weaknesses

- Cryogenics Complexity, Cost
- Technical maturity

 $Nb_3Sn > HTS \\$

Funded by the

European Union

- Magnetic performance PMU<Nb-Ti <Nb₃Sn <REBCO
- Technical maturity Cryogenics, Nb-Ti proven for storage rings
- Radiation hardness LTS \lesssim 30 MGy, limited by insulation material
- Fixed gap

Weaknesses

- Cryogenics Complexity, Cost
- Technical maturity
 Nb₃Sn > HTS
- Field quality control LTS complex, HTS undeveloped

Opportunities

Funded by the

European Union

- SCU technologies enable very compact design of FEL Nb-Ti: available now

Nb₃Sn, HTS: high potential for future developments

- active R&D programs on SCU-FEL technologies in particular: LCLS-II
- still much progress on conductor performance
 ⇒ XLS can take advantage

Threads

 risk that R&D on advanced SCU technologies might not lead to satisfactory results

e.g. turn out to be too complex, too expensive, not feasible...

Ongoing R&D at XLS project partners

European Union

In-Vacuum SCU (STFC)

In-vacuum SCU at	CLAR	A	SCUS for FELS	
Parameter	Unit	Value	relaxed vacuum	
Period length Gap Number of periods Peak field	mm mm T	15.5 7.4 16 1.25	 requirements in-vacuum SCU: magnetic gap reduced by 1 mm wakefield heating under our control 	

Test setup at CLARA

Funded by the

European Union

Experimental achievements

- Demonstrated that the in-vacuum SCU can operate with beam
- Thermal behaviour with beam measured

To be done

- Set up appropriate field integral compensation
- Measure photon beam spectrum to confirm magnetic field strength and quality

PSI GdBCO bulk sample

Two samples ready for test:

- 10-period GdBCO bulk sample
- 10-period GdBCO stacked tape sample
 Test of first sample in co-operation with University of Cambridge in July

HTS tape coils (CERN)

- Model calculations concluded
- procurement of tapes started
- coil formers for sample windings under construction

Nb-Ti TGU development (KIT)

- Istallation of a 40-period TGU in its cryostat finalized
- magnetic characterization (hall probe scan) setup implemented
- experiments with beam foreseen for 2020

Thank you!

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

