Work Package 5: Undulators and light production

Variable polarisation and design choices

<u>Héctor Mauricio Castañeda Cortés</u>, David Dunning Science and Technology Facility Council (STFC)

XLS Midterm Review Meeting.

Helsinki, Finland 30/06/2019

Overview

Constraints on design and undulator technologies

Scenarios of variable polarisation

Study of feasibility of an after-burner(AB) for polarisation control

Comparison with saturation length of SCU

FEL performance and compactness

Degree of polarisation

Concluding remarks

Constraints on design and undulator technologies

Constraints on undulator choice

- ▶ Photon energy \Rightarrow Resonance condition, $\lambda = \frac{\lambda_v}{2\gamma^2} (1 + a_{w_0}^2)$.
- ► Tuning across photon energies \Rightarrow undulator scanning (2 λ).
- **► Two-colour operation** ⇒ *independent of undulator technology*.
 - Single undulator line ⇒ Multiple bunches
 - Separate undulator lines $\Rightarrow \lambda$ tuning of 10-20%
- Pulse duration down to 100 as
 - Independent of undulator technology
 - ∘ Larger λ in SXR \Rightarrow Few cycle FEL pulses
 - ♦ Very short undulator modules.
 - Mode-locking afterburner.
 - Undulators with a strongly chirped undulator period
- ► Repetition rate (≈ 1 kHz) and <10 fs synchronization ⇒ independent of undulator technology
- Variable polarisation

Scenarios of variable polarisation

- Variable polarization undulator for the full undulator line
 - Straight-forward
 - Not achievable for some technologies (e.g. CPMU and SCU).
- II. Crossed undulator technique
- III. Undulator plus after-burner(AB)

Variable polarisation via beamline (not investigated)

- Variable polarization undulator for the full undulator line
 - Straight-forward
 - Not achievable for some technologies (e.g. CPMU and SCU).
- II. Crossed undulator technique
 - Any undulator can be used.
 - Relatively low degree of polarisation.
- III. Undulator plus after-burner(AB)
- Variable polarisation via beamline (not investigated)

Scenarios of variable polarisation

- . Variable polarization undulator for the full undulator line
 - Straight-forward
 - Not achievable for some technologies (e.g. CPMU and SCU).
- II. Crossed undulator technique
 - Any undulator can be used.Relatively low degree of
 - polarisation.
- III. Undulator plus after-burner(AB)
 - Any undulator can be used.
 - The afterburner then sets the shortest wavelength achievable.

Variable polarisation via beamline (not investigated)

Study of feasibility of an after-burner(AB) for polarisation control

Afterburner option

Comparison between options (I.) and (III.) (helical SCU plus a delta planar AB) was done.

Beam parameters

Electron beam parameter	Value
Beam Energy	5.5 GeV
Peak Current	5 kA
Normalised $\varepsilon_{x,y}$	0.2 mm-mrad
RMS slice energy spread	0.01%
Maximum Photon Energy	16 keV
Average eta function	9 meters

Undulators parameters

Undulator type	a_w	$\lambda_{\mathbf{u}}$ (mm)	L _{section} (m)
SCU	0.907	9.85	2.27
Delta planar(AB)	0.546	13.83	2.28

L_{AB} and L_{sat-SCU} (Compactness)

Length of AB

- ► GENESIS simulation of the scenario (I.), SCU and delta planar undulator.
- $ightharpoonup L_{AB} < L_{Delta-sat} L_{SCU-sat}$
- Scenario (III.) is more compact as long as the length of the afterburner is less than 13m.

L_{AB} and L_{sat-SCU} (Compactness)

Length of AB

- ► GENESIS simulation of the scenario (I.), SCU and delta planar undulator.
- $ightharpoonup L_{AB} < L_{Delta-sat} L_{SCU-sat}$.
- Scenario (III.) is more compact as long as the length of the afterburner is less than 13m.

GENESIS FEL figures of merits

Undulator type	L _{sat.} (m)		P _{saturat}	P _{saturation} (GW)		$E_{pulse\text{-sat.}}(\muJ)$	
	SS	TD	SS	TD	SS	TD	
SCU	21.85	15.61	15.37	9.53	N/A	52.11	
Delta planar	36.24	29.13	3.52	7.53	N/A	41.19	

- $ightharpoonup \Delta L = L_{undulator-line} L_{sat-Delta}$
- $\eta_{
 m delta} = 100 imes \ {
 m max} ig(E_{
 m pulse-end-AB} / E_{
 m pulse-sat-Delta} ig)$
- ▶ E_{pulse} at the end of AB(-) \rightarrow 17% 68.4% \times $E_{\text{sat-delta}}$ (41.19 μ J).

L _{AB} (m)	ΔL (m)	η_{Delta}
2.28	10.9	17.2%
4.56	8.7	24.4%
6.84	6.4	31.3%
9.13	4.1	42.6%
11.4	1.8	68.4%

- $ightharpoonup \Delta L = L_{undulator-line} L_{sat-Delta}$
- $\eta_{
 m delta} = 100 imes \ {
 m max} ig(E_{
 m pulse-end-AB} / E_{
 m pulse-sat-Delta} ig)$
- ► E_{pulse} at the end of AB(--) \rightarrow 17% 68.4% \times E_{sat-delta} (41.19 μ J).

L _{AB} (m)	ΔL (m)	η_{Delta}
2.28	10.9	17.2%
4.56	8.7	24.4%
6.84	6.4	31.3%
9.13	4.1	42.6%
11.4	1.8	68.4%

- $ightharpoonup \Delta L = L_{\text{undulator-line}} L_{\text{sat-Delta}}$
- ightharpoonup $\eta_{
 m delta} = 100 imes$ $\max(E_{\text{pulse-end-AB}}/E_{\text{pulse-sat-Delta}})$
- ightharpoonup E_{pulse} at the end of AB(-) \rightarrow $17\% - 68.4\% \times E_{\text{sat-delta}}$ (41.19) μJ).

L _{AB} (m)	ΔL (m)	η_{Delta}
2.28	10.9	17.2%
4.56	8.7	24.4%
6.84	6.4	31.3%
9.13	4.1	42.6%
11.4	1.8	68.4%

Funded by the European Union LAB and Epulse-AB (FEL performance) Compact

Compromise between compactness and FEL performance must be made.

- $ightharpoonup \Delta L = L_{\text{undulator-line}} L_{\text{sat-Delta}}$
- $\eta_{
 m delta} = 100 imes \ {
 m max}(E_{
 m pulse-end-AB}/E_{
 m pulse-sat-Delta})$
- ▶ E_{pulse} at the end of AB(-) \rightarrow 17% 68.4% \times $E_{\text{sat-delta}}$ (41.19 μ J).

	L _{AB} (m)	ΔL (m)	η_{Delta}
	2.28	10.9	17.2%
	4.56	8.7	24.4%
2	6.84	6.4	31.3%
	9.13	4.1	42.6%
	11.4	1.8	68.4%

Degree of polarisation

Degree of polarisation

► Assumption: Radiation of the SCU is **blocked** ⇒ AB

Radiation 100% **linear**.

Figure: Reverse taper and beam diverting scheme to achieve variable polarisation[1, 2]

- Scheme using reverse taper and beam diverting technique demonstrated experimentally [1] (planar undulator and helical AB)
 - Bunching at the level at saturation at the end of the undulator.
 - Peak Power suppressed.

Concluding remarks

Concluding remarks

Constraints of undulator choice

- ► Constraint on photon energy given the resonance condition.
- ightharpoonup Tuning across photon energies via undulator scanning (2 λ)
- Two-colour operation (independent of undulator technology) (λ tuning between 10 and 20 %)
- Pulse duration down to 100 as (few cycle FEL schemes for larger λ in SXR. Otherwise, independent of undulator technology)
- Repetition rate and synchronisation independent of undulator choice

Concluding remarks

Variable polarisation

- Variable polarisation undulator for the whole undulator line (not achievable for some technologies).
- Crossed undulator technique (low degree of polarisation)
- ▶ Undulator + AB (AB dictates λ and maximum E_{beam} of the facility)

Helical SCU+Delta planar AB

- Experimentally demonstrated for planar undulator and helical AB [1].
- ► $L_{AB} < L_{Delta-sat} L_{SCU-sat} \approx 13m$.
- ► FEL performance between 17% and 68.4 % × E_{pulse-Delta-sat}.
- Reduction in length of undulator line up to 10.9 meters.
- ► A compromise between compactness and FEL performance shall be done.

References

A. Lutman et al.

"Polarization control in an X-ray free-electron laser" *Nature Photonics* 10(468).

E. A. Schneidmiller and M. V. Yurkov

"Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper"

Phys. Rev. ST-AB 16, 110702(2013).

Thank you!

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

Extra-slides

Variable polarisations scenarios

Slide by David Dunning.

