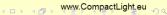


Work Package 6: Beam dynamics and Start-to-End (S2E) modelling

FEL computer codes for the facility design


<u>Héctor Mauricio Castañeda Cortés</u> Science and Technology Facility Council (STFC)

XLS Midterm Review Meeting.

Helsinki, Finland 30/06/2019

CompactLight@elettra.eu

Introduction

Semi-analytical methods FEL simulation codes

Study case: Generation of hard X-Rays from a cryogenic permanent magnet undulator (CPMU)

Comparison between Ming Xie and Dattoli

Comparison between GENESIS and PERSEO Comparison of FEL figures of merits Simulation codes and Start-to-End(S2E)

Concluding remarks

Introduction

-=

Different options

- 1D and 3D Theory of FELs.
- Semi-analytical approaches.
 - 1. Ming Xie [1]
 - 2. Dattoli et al.[2]
- 1D and 3D simulation codes.
 - 1. 1D Codes (Prometeo, PERSEO [4])
 - 2. 3D Codes (GENESIS[3], FAST, GINGER, MINERVA, PUFFIN)

Integration to a Start to End (S2E) environment

- ► Integration and interfacing to beam dynamics and optical codes (OCELOT, XFEL simulation toolkit, ASTRA ⇒ GENESIS, SDDS-Toolkit, ELEGANT ⇒ GENESIS)
- Integration to Optics propagation codes (OPC, SRW)
- Simulation time and scope of the study.

1D FEL theory

• Pierce parameter (FEL efficiency)

$$ho = rac{1}{2\gamma} \left(rac{I_0}{I_A}
ight)^{rac{1}{3}} \left(rac{\lambda_u K f_B}{2\pi\sigma_x}
ight)^{rac{2}{3}}$$

- ♦ l_0 (peak current), I_A (Alfvén current), $\gamma = E_{\text{beam}}/m_ec^2$, λ_u (undulator period), K (undulator parameter), σ_x (rms of electron beam size), f_B (coupling between electrons and the field).
- Gain length $L_{g,1D} = \frac{\lambda_u}{4\sqrt{3}\pi\rho}$
- Saturation length \approx 20 L_{g,1D}
- Saturation power

 $\mathsf{P}_{\mathsf{sat}} = \mathsf{1.6} \times \rho \mathit{P}_{\mathsf{noise}}$

• $\mathsf{BW}_{\mathsf{sat}} \approx
ho$

Ming Xie

Correction to 1D theory

- $\Lambda(\eta_d, \eta_{\varepsilon}, \eta_{\sigma})$ accounts for
 - \Box Gain reduction due to diffraction,

$$\eta_d = \lambda/(4\pi\sigma_x^2)L_{g,1D}.$$

- □ Gain reduction due to finite emittance, $\eta_{\varepsilon} = (4\pi\varepsilon/\lambda)(L_{g,1D}/\beta).$
- \Box Gain reduction to energy spread,

$$\eta_{\gamma} = (\sigma_{\gamma}/\gamma)(L_{g,1D}/\lambda_u)$$

- \Box Frequency detuning optimised(shortest L_g).
- Gain length $\rightarrow L_g = L_{g,1D} [1 + \Lambda]$
- Saturation Power $\rightarrow P_{sat} = \frac{1.6\rho P_{beam}}{\left(1+\Lambda\right)^2}$

• Saturation Length
$$\rightarrow L_{sat} = L_g \ln \left(\frac{P_{sat}}{\alpha P_0} \right)$$

ience & Technology

1D FEL theory

• Pierce parameter (FEL efficiency)

$$\rho = \frac{1}{2\gamma} \left(\frac{I_0}{I_A} \right)^{\frac{1}{3}} \left(\frac{\lambda_u K f_B}{2\pi \sigma_x} \right)^{\frac{2}{3}}$$

- Gain length $L_{g,1D} = \frac{\lambda_u}{4\sqrt{3}\pi\rho}$
- Saturation length \approx 20 L_{g,1D}
- Saturation power $P_{sat} = 1.6 \times \rho P_{noise}$
- $\mathsf{BW}_{\mathsf{sat}} \approx
 ho$
- Ming Xie and Dattoli assume a transversely symmetric electron beam and a constant current profile.

Dattoli et al. Correction to 1D theory

- Power as a function of z $P(z) = P_0 \frac{A(z)}{1 + \frac{P_0}{P_S}[A(z, L_{g,1D}) - 1]}$
 - Gain length L_g recalculated in terms of χ (correction function to include normalized emittance, RMS energy spread effects.)

• Gain Length
$$L_g = \chi\left(\rho, \frac{\sigma_{\gamma}}{\gamma}\right) L_{g,1D} \simeq \left(1 + \frac{0.185\sqrt{3}}{2}\mu_{\varepsilon}^2\right) L_{g,1D}, \quad \mu_{\varepsilon} = 2\frac{\sigma_{\gamma}/\gamma}{\rho}$$

- Saturation Power $P_{\text{sat,3D}} = \sqrt{2} \Phi(\chi) \left(\frac{L_{g,1D}}{L_g}\right)^2 \rho_D P_{\text{beam}}$
- Saturation Length $L_{\text{sat,3D}} = 1.066 L_g \left(\rho_D, \frac{\sigma_{\gamma}}{\gamma} \right) \ln \left(\frac{9P_{\text{sat}}}{P_0} \right)$

Science & Technology

PERSEO

- <u>1D</u> Library of functions within the Mathcad[®] framework (Luca Giannessi)[4].
- Solves the pendulum-like FEL equations coupled with the field equations.
- Correction needed for a FEL oscillator or seeding scheme or to include diffraction effects, a filling factor is added to the coupling between electrons and field.

GENESIS

- Widely used <u>3D</u> simulation code implemented by Sven Reiche.
- Solution of Paraxial Equation (using SVEA and paraxial current approximations) on a <u>Transverse Cartesian Grid</u>.
- ► Integration of the field ⇒ <u>Alternative Direction</u> Implicit Method.
- ► Leapfrog method ⇒ avoid field and particle dynamics at the same grid position.
- ► Macro-particles per slice.

GENESIS and PERSEO

Code	PERSEO	GENESIS
Open Source	No	Yes
Start from shot noise	Yes	Yes (Hammersley sequence)
Time-Dependent	Yes	Yes
Parallelised	No	Yes
Radiation Field	1D	3D
Harmonics	Yes	Yes
Wiggler Errors	No	Yes
Wakefield Algorithm	No	Yes
Scripting	No	Yes

Bench-marking between codes

Comparison between <code>GENESIS</code> and <code>PERSEO</code> was done to simulate the performance of the SPARC facility [5] \rightarrow agreement in saturation length and other figures of merit.

Study case: Generation of hard X-Rays from a cryogenic permanent magnet undulator (CPMU)

Study case: HXR generation

Funded by the

European Union

Setting up a CPMU (cryogenic permanent magnet undulator) with a length larger than the saturation length, tuned to generate radiation with photon energy of 16 keV.

Estimations using Ming-Xie and Dattoli semi-analytical models.

. . . .

Time-dependent simulations using GENESIS (10 noise realisations) and PERSEO.

Beam Parameters		Undulator parameters	
Beam parameter	Value	Undulator parameter	Value
E _{beam}	5.5 GeV	Туре	Planar
I ₀	5 kA	Period	12.87 mm
Shape	Flat-top	a _{wo}	0.628
Bunch length	1.64 μm	Module length	2 m
Q _{bunch}	27 pC		
Normalised $\varepsilon_{x,y}$	0.2 mm-mrad		
RMS slice σ_γ	0.01%		

Funded by the

European Union

Figure of merit	Ming-Xie	Dattoli
P _{sat} [GW]	17.97	22.02
L _{sat} [m]	20.81	19.47
<i>L_{gain}</i> [m]	1.12	0.974

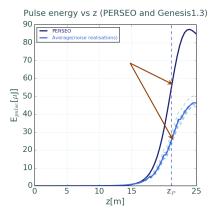
FEL figures of merits

- Gain and saturation length agreed well, to within a relative difference ΔL_{sat}/L_{Xie-sat} of approximately 6%.
- Difference in saturation power between analytic models of a 22.53%.

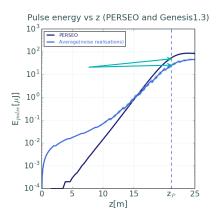
Funded by the

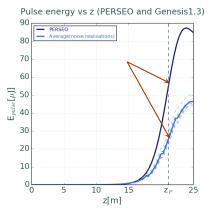
European Union

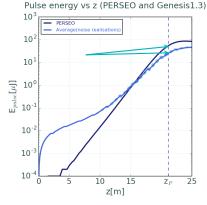
Figure of merit	Ming-Xie	Dattoli
P _{sat} [GW]	17.97	22.02
L _{sat} [m]	20.81	19.47
L _{gain} [m]	1.12	0.974


FEL figures of merits

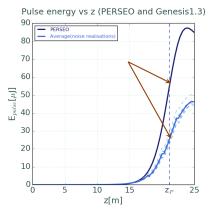
- Gain and saturation length agreed well, to within a relative difference ΔL_{sat}/L_{Xie-sat} of approximately 6%.
- Difference in saturation power between analytic models of a 22.53%.



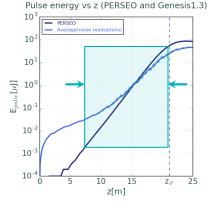

Similar saturation length.


► Difference in linear regime ⇒ growth rate,gain length

Similar saturation length.


► Difference in linear regime ⇒ growth rate,gain length

Difference in pulse energy at saturation between the codes Pulse energy obtained from GENESIS is around 50 % of the one obtained via PERSEO.



Compact

Similar saturation length.

► Difference in linear regime ⇒ growth rate,gain length

Difference in pulse energy at saturation between the codes Pulse energy obtained from GENESIS is around 50 % of the one obtained via PERSEO.

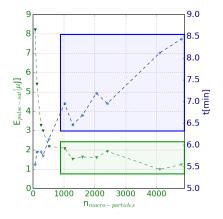
Compact

Figure of merit	PERSEO	GENESIS
P _{sat} [GW]	11.4	5.69
L _{sat} [m]	21.62	21.69
$E_{pulse}[\muJ]$	60	31.09
Nphotons	2.3×10 ¹⁰	1.28×10 ¹⁰
Bandwidth[%]	0.055	0.064
B _{sat}	4.2×10 ³²	1.41×10 ³²
Running time	< 5 min ^a	90 min (25 processors)

^aNo compilation. Post-processing at running time.

Difference in figures of merits at saturation between the codes

- Ratio of Brightness calculated via the two codes of almost 3
- ► Difference ⇒ Number of transverse higher modes between PERSEO and GENESIS [5]



Funded by the European Union

Running time and S2E

Simulation time and S2E

- Faster simulation time for PERSEO.
 - Ways to optimise the running time in GENESIS⇒
 number of macro-particles, integration step, the dimension and resolution of the Cartesian Grid
- PERSEO ⇒ 1D beam dynamics codes (LiTrack) ⇒ Fast studies(longitudinal dynamics)
- ► GENESIS ⇒ 3D beam dynamics codes (ELEGANT, ASTRA) ⇒3D more comprehensive simulations

Concluding remarks

A brief description of the FEL codes and semi-analytical approximations available within the partners of the CompactLight collaboration is done.

FEL codes and S2E

- PERSEO provides a quick solution for scenarios in which longitudinal dynamics are relevant and can be interfaced to 1D beam dynamics codes (LiTrack).
- GENESIS provides a more comprehensive solution for 3D and can be interfaced to 3D beam dynamics codes (ELEGANT and ASTRA).

Study case : Generation of HXR with a CPMU

- Bench-marking of semi-analytical models and FEL simulation codes (PERSEO and GENESIS) was done by setting up a CPMU, generating FEL radiation within the hard X-Ray domain (*E*_{photon} = 16*keV*).
 - Ming Xie and Dattoli agree on the gain length (hence the saturation length). Difference between estimates of saturation power around 22%.
 - For the 3D simulations (PERSEO and GENESIS), the results agree with the benchmark study carried out by Giannessi et al. [5].
 - △ PERSEO shows a difference in the linear regime and pulse energy compared to GENESIS. This is due to a difference in the contributions of high order modes through the Cartesian Grid (for GENESIS). PERSEO only has a fundamental high order mode, corresponding to its 1D nature.

21/22

M. Xie

"Design optimization for an X-ray free electron laser driven by SLAC linac" *Proced. IEEE Part. Accel. Conf.* 183(1995).

Dattoli et al.

"Inhomogeneous broadening effects in high-gain free electron laser operation: A simple parametrization"

Nuovo Cimento D 11, 393(1989).

Reiche

Giannessi

"GENESIS 1.3: a fully 3D time-dependent FEL simulation code"

Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1, 243 (1999).

"PERSEO FEL-CAD Library"

http://www.perseo.enea.it/(2007).

Giannessi et al.

"Self-amplified spontaneous emission for a single pass free-electron laser"

Phys. Rev. Spec. Top. - Accel. Beams 14, 060712 (2011).

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

