

Status of Start-to-end Simulations S+X - Band Compact Light Option

Edu Marin¹ R. Munoz Horta¹ emarin@cells.es

¹CELLS, Barcelona, Spain

July 2nd, 2019

XLS Midterm Review, WP6: Beam Dynamics Helsinki (FINLAND)

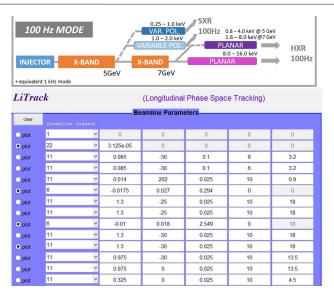
Acknowledgements: A. Latina, S. Di Mitri, A. Giribonno

Outline

XLS New Design

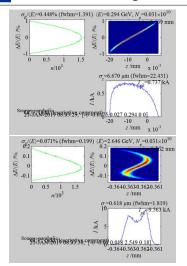
Injector Distribution (S-Band)

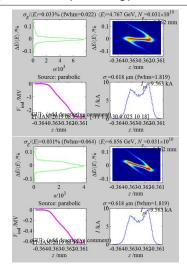
Lattice v2019


Twiss Parameters

Summary

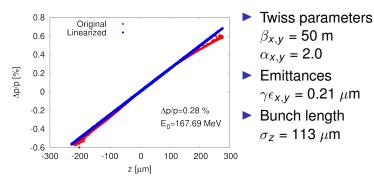
XLS New lattice (S. Di Mitri)





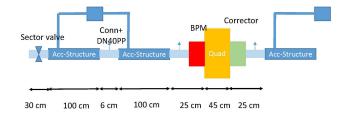
+ longitudinal wake-fields of S and X-band structures

Tracking Results by Li-Track (1-D long) Compact


Initial: E= 160 MeV (0.5%), Q= 50 pC, σ_z = 85 μ m, $\gamma \epsilon_{\perp}$ = 0.2 μ m Final: E= 6.9 GeV (0.03%), Q= 50 pC, σ_z = 0.6 μ m, $\gamma \epsilon_{\perp}$ = 0.2 μ m

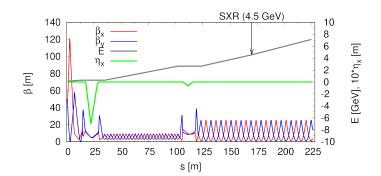
S-Band Injector*

- Injector Operation Mode: Velocity Bunching
- Output Energy: 168 MeV
- Normalized Energy Spread: 0.28%
- # e⁻: ≈31 k
- Bunch Charge: 75 pC


^{*} provided by A. Giribono

Lattice Design

- New lattice fully designed by Placet
- Linac-1: 2 acc. structures between FODO quads
 - Module config. presented in the 1st XLS annual meeting by M. Aicheler (WP4: Integration)

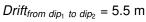


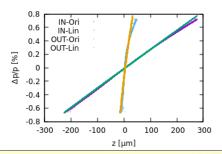
- Linac-2 (A&B): 4 acc. structures between FODO quads (original lattice)
- ▶ W_{\perp} & W_{\parallel} short wakefields included ($Q_{\text{bunch}} = 75 \text{ pC}$)

New XLS v2019 Lattice

- ► Total Length: 227 m
- 8 bending magnets, 128 Quads, 139 Cavities
- ► Energy Profile (GeV): BC1 BC2 SXR HXR 0.3 2.6 4.5 7.1

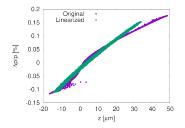
Lattice available at https://gitlab.cern.ch/XLS-Git/WP6




Bunch Compressor 1

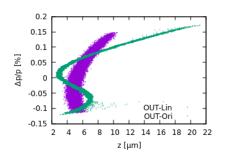
- ▶ 4-dipole chicane
- Injected normalized energy spread is half than assumed in Li-Track
- ▶ Injected bunch length is \approx 30 % larger than assumed in Li-Track
- R₅₆ increases from -0.017 m (Li-Track) to -0.035 m

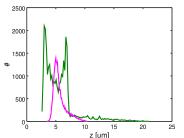
▶
$$|\theta_{\rm dip}| = 2.86 \, {\rm deg}$$



$$\sigma_Z$$
 = 112 μ m \Rightarrow BC1 \Rightarrow σ_Z = 11 μ m σ_Z = 10 μ m Original Linearized

Linac 1

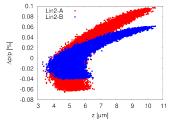

Lin-1: ϕ = 20.0 deg Grad = 68.01 MV/m

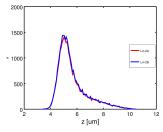


- ▶ Original: E = 2.6 GeV σ_Z (rms) = 11 μ m $\Delta p/p = 0.06 \%$
- ► Linearized: E = 2.6 GeV σ_z (rms) = 10 μ m $\Delta p/p = 0.06 %$

Bunch Compressor 2

$$\sigma_{z}$$
 = 11 μ m σ_{z} = 10 μ m ψ BC2 ψ


$$\sigma_z$$
 = 2.8 μ m σ_z = 1.1 μ m Original Linearized



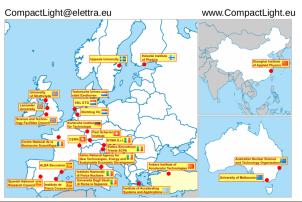
Linac 2 (Linearized Dist.)

- ► Lin-2A: ϕ = 30 deg Grad = 72.2 MV/m
- ► Lin-2B: ϕ = 0.0 deg Grad = 72.2 MV/m

- ► Lin-2A: E = 4.48 GeV $\gamma \epsilon_{x,y} = 0.22 \ \mu \text{m}$ $\sigma_z = 1.1 \ \mu \text{m}$ $\Delta p/p = 0.035 \%$
- Lin-2B: E = 7.08 GeV $\gamma \epsilon_{x,y}$ = 0.22 μm σ_z = 1.1 μm Δ p/p = 0.022 %

Summary & Outlook

- New XLS design features:
 - Footprint around 227 m for an output energy of 7 GeV
 - ▶ Bunch length 1.1 μ m, $\Delta p/p$ =0.02%, $Q_{\text{bunch}} = 75 pC$
 - Linac-1 stronger focusing lattice than Linac-2
- ▶ Latest S-band injector beam (VB mode σ_z =85 μ m)
 - Significant difference between real and linearized injector distribution


This is not the final design...

- Still room for optimization
- Include misalignment imperfections to study the impact of wake-fields on the transverse emittance
- ► CSR (trade off between θ and $Drift_{from dip_1 to dip_2}$)
- Repeat exercise using the C-band injector distribution

Thank you for listening

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

