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Bardeen–Cooper–Schrieffer theory explains how the heat ca-
pacity of the superfluid vanishes when the temperature ap-
proaches zero. Various mechanisms may suppress the pair-
ing gap in the superfluid, leading to an increased heat ca-
pacity. In turn, this may translate to changing the cooling
rate and the thermal evolution of neutron stars. The pres-
ence of a vortex in a superfluid neutron matter will add extra
degrees of freedom in which the energy is stored, hence con-
tributing to the heat capacity. From fully microscopic simu-
lations, employing Superfluid Local Density Approximation
(SLDA), it is possible to calculate the finite-temperature en-
ergy of the system. We use Brussels-Montreal type energy
density functional, a very accurate nuclear functional de-
signed to agree with existing astrophysical constraints. Us-

ing this state-of-the-art functional, we estimate the change in the heat capacity that results from
the mere existence of a vortex in the system.

System

A typical setup with arrows representing
currents, and the red contour a place where
the pairing field vanishes.

• grid: 60x60x60 (120x120x24)

• lattice spacing: 1.5 fm

• periodic boundary conditions

• external potential: a tube

• imprinting phase of ∆ for a vortex

•N = 216− 24000

• ρ = (0.000284− 0.0316)fm−3

Brussels-Montreal family of density functional
Experimental data
• atomic masses

• nuclear charge radii

• symmetry energy

• incompressibility

N-body calculations
• EoS of pure neutron matter

• 1S0 pairing gaps in nuclear matter

• effective masses in nuclear matter

• stability against spin and spin-isospin fluctua-
tions

Numerical method

Quality of results highly depends on the quality of density functional:

ε(ρ, ~∇ρ, ν, τ, j) =
~2

2M
τ + ερ(ρ) + ετ (ρ, τ, j) + ε∆ρ(ρ, ~∇ρ) + επ(ρ, ~∇ρ, ν),

which is used to calculate mean-field potentials and densities in a self-consisted way without any
geometrical constraints.
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Hartree-Fock-Bogoliubov equations

(
h(r) ∆(r)

∆∗(r) −h∗(r)

)(
uk(r)
vk(r)

)
= εk

(
uk(r)
vk(r)

)
Superfluid Local Density Approximation

A. Bulgac, Physical Review A 76, 040502 (2007)

Length scales

Length scales in the system are set by the coherence length and inverse Fermi wave vector. Due to
the fermionic nature of the superfluidity, the vorex core is in a normal state and surrounded with
superfluid.
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Tension
The vortex tension depends on temperature and is one of the parameters important for the meso-
scopic models that be extracted from microscopic simulation.
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Velocity
Effective size of the vortex core is one of the parameters of the Vortex Filament Model, for which
there is no experimental data for nuclear matter. This length is associated with the distance from
the core at which the finite-size effects does not play any role. We find this distance by comparing
velocities of an ideal vortex vsf(r) with a realistic one v(r):

vsf(r) =
~c
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Heat capacity

The contribution to the heat capacity from the vortex core is connected to the localized so-called
Caroli–de Gennes–Matricon in-gap states.
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By finding the energy of a system with and without vortex as a function of temperature, one can
find the heat capacity per unit of length. Note that the physical significance comes from compari-
zon to the heat capacity of a unifom system.
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The heat capacity ratio of the considered system, compared to the uniform system shows that the
increase of the heat capacity might be very large for high vortex areal densities. While the areal
density of vortices in neutron stars are rather low, this contribution to the heat capacity might be
important in other systems like liquid helium or ultracold atoms.

The approximate contribution of the heat capacity from the flow around the vortex as a function
of temperature T , chemical potential µ and pairing ∆
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Summary
• fully self-consistent 3D HFB calculations

• BSk31 Energy Density Functional adopted

• effective radius relevant for Vortex Filament
Model

• superfluid fraction drops in the vortex core

• heat capacity contributions

• specific heat does not grow linearly as ex-
pected

• starting point for dynamics


