

Trap System for Measuring Neutron Capture Cross Section of Short-lived Isotopes

<u>Heinrich Wilsenach¹</u>, Timo Dickel^{1,2}, Israel Mardor^{3,4}, J. Ashkenazy⁴, Emma Haettner², Wolfgang Plaß^{1,2}, Christoph Scheidenberger^{1,2}

¹II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
³Tel Aviv University, Tel Aviv, Israel
⁴Soreq Nuclear Research Center, Yavne, Israel

Nuclear Physics in Astrophysics - X

NG-Trap: H. Wilsenach -- 5.9.2022

The Problem Challenge

Effect of uncertain neutron capture rates

Progress in Particle and Nuclear Physics 86 (2016) 86-126

Experimental Challenge: Target and projectile are unstable.

Soreq Applied Research Accelerator Facility (SARAF)

SARaf exOtic Nuclide fAcility (SARONA)

Final Trap Specifications

- "Cloud Target": ~10¹⁰ ions with same A, in the region A ~ 85-155 (fission products)
- Trapping duration: ~300 s
- Trap volume can/should be cylindrical. Transverse dimensions of a few mm. Longitudinal can be longer, up to ~ 10's cm
- Trap should enable irradiation by cold/thermal neutrons (~1-25 meV)
- Trap should contain ion kinetic energy of up to ~100's eV
 - β -decay (A daughters of short-lived FPs) and (n,γ) (A+1 daughter)
- A+1 ions should be ejected in a particular direction (axial or radial), towards a mass spectrometer

SARaf exOtic Nuclide fAcility (SARONA)

Neutron Cross Section

Fission Yields of ²³⁸U at 14 MeV

https://wwwndc.jaea.go.jp/cgi-bin/FPYfig

Comparison to measured $\sigma(n_{th},\gamma)$ so far

- Cross section values are from TALYS
- TALYS gives σ for thermal neutrons
- We assume $\sigma(\text{cold}) \sim 2 \cdot \sigma(\text{thermal}) (1/E^{1/2} \text{ trend})$

Comparison to measured $\sigma(n_{th},\gamma)$ so far

- Cross section values are from TALYS
- TALYS gives σ for thermal neutrons
- We assume $\sigma(\text{cold}) \sim 2 \cdot \sigma(\text{thermal}) (1/E^{1/2} \text{ trend})$

NG-Trap

NG-Trap Setup

*E. Haettner *et al.*, A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei, Nucl. Inst. Meth. A 880 (2018) 138

Progress

Current [nA]

-2

Conclusion and outlook

- Optimise transport and trapping
- Continue simulations of all components
 - n-induced fission product (FP) generation
 - FP extraction and transport
 - NG-Trap RF simulations with space charge
 - neutron-ion kinematics
 - neutron flux enhancement via reflectors around trap
- Test concept by hydrogen capture on molecules
- Construction of a dedicated RF trap and demonstration
- Tests with a neutron beam and a target of stable ions (with high $\sigma(n,\gamma)$ values, e.g. ^{155,157}Gd, ¹⁴⁹Sm)
- Installation and testing at SARAF-II

Backup

Energy Spectrum ^{nat}Ga

Status

Example of measured isotopes

- The more stable isotopes (in this case: ¹³⁸Cs, ¹³⁶Cs, ¹³⁴I, etc.) have IFY << 1%, so they will probably not be measured
- Special cases with extremely large $\sigma(n,\gamma)$ will be measured, e.g., ¹³⁵Xe, with $\sigma(n,\gamma) = 2.6e6$ barn(!)

17

NG-Trap

Project Sketch

Rate

- Cross section values are from TALYS
- TALYS gives s for thermal neutrons
- We assume $s(cold) \sim 2 \cdot s(thermal) (1/E^{1/2} trend)$

Resonance

Neutrons

Fe shape is used and normalised to give the GaIn spectrum.

ltoga et al. 2006

Expected event rate

FP rate before mass filter	2.1E+09	FPs / sec			
IFY for relevant fission fragment	3.0E-02		Average	CFY	
FP rate after mass filter	6.2E+07	FPs/sec			
Accumulation time	300	sec			
Fission fragments in 'target'	1.8E+10	FPs			
flux of cold n from guide on 'target'	1.10E+10	n/sec/cm2			
(n,g) CS on relevant fission fragments	1.00E+00	barn			
Conversion from barn to cm2	1.0E-24	cm2			
Accumulation factor	0.5	No CS measurment during accumulation			
# of events / sec	1.0E-04	events/sec	:		
# of events / hour	3.7E-01	events/hr			
resonance ejection efficiency	0.9				
MR-TOF efficiency	0.5				
# of measured events / hour/barn	1.6E-01	measured events/hr/barn			
# of measured events /day/barn	4.0E+00	measured events/day/barn			

- Evaluated σ(n,γ) for cold neutrons of neutron-rich isotopes range from ~1 barn to ~10's of barns
- Several isotopes have extremely large values, e.g., σ(¹³⁵Xe(nt_h,γ)) = 2.6e6 barn
- A very recent surprise¹: σ(⁸⁸Zr(n_{th},γ)) = 8.6e5 barn. Prediction (TALYS) ~10 barn
- We may find more such 'surprises' Nature 565, 328 (2019)