Nuclear Physics in Astrophysics - X

Contribution ID: 54

Type: Oral

Indirect study of 17O(a,n)20Ne and 17O(a,g)21Ne reactions via 17O(7Li,t)21Ne alpha-transfer reaction and its impact on the s-process in rotating poor-metal massive stars

Monday, 5 September 2022 14:30 (15 minutes)

F. Hammache¹, P. Adsley^{2,3,*}, L. Lamia^{4,5,6}, D. S. Harrouz¹, N. de Séréville¹, B. Bastin⁷, T. Faestermann⁸, C. Fougères⁷, R. Hertenberger⁹, M. La Cognata⁵, A. Meyer¹, S. Palmerini^{10,11}, R.G. Pizzone⁵, F. de Oliveira⁷, S. Romano^{4,5,6}, A. Tumino^{12,5}, H.-F. Wirth⁹

¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

 2 School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

³ iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa

- ⁴ Dipartimento di Fisica e Astronomia "E. Majorana", Univ. di Catania,95123 Catania, Italy
- ⁵ Laboratori Nazionali del Sud Istituto Nazionale di Fisica Nucleare, 95123 Catania, Italy

⁶Centro Siciliano di Fisica Nucleare e Struttura della Materia CSFNSM, Catania, Italy

⁷ GANIL, CEA/DRF-CNRS/IN2P3, 14076 Caen, France

⁸ Physik Department E12, Technische Universität München, D-85748 Garching, Germany

 9 Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany

 10 Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy

¹¹ Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy

¹² Facoltà di Ingegneria e Architectura, Università degli Studi "Kore", 94100 Enna, Italy

* Present address:Cyclotron Institute and Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA

Recent models of low metallicity rotating massive stars show the possibility of a large production of s-elements between strontium and barium. The efficiency of the s-process in these stars depends strongly on the ratio of the reaction rates of the two competing ${}^{17}O(\alpha,n)^{20}Ne$ and ${}^{17}O(\alpha,\gamma)^{21}Ne$ reactions [1]. This ratio determines the influence of the poisoning effect of ¹⁶O which consumes the neutrons released by the ²²Ne(α ,n)²⁵Mg reaction, the main neutron source for the weak component of the s-process in massive stars. Indeed, the neutrons consumed by ${}^{16}O(n,\gamma){}^{17}O$ may either be released by ${}^{17}O(\alpha,n){}^{20}Ne$ or lost for good via ${}^{17}O(\alpha,\gamma){}^{21}Ne$. However, the reaction rates of these two competing reactions are poorly known because of the lack of spectroscopic information (Γ_{α} , J^{π} , Γ_{n} , Γ_{γ} ,...) of the astrophysical relevant states in the compound nucleus ²¹Ne. To have a better determination of ${}^{17}O(\alpha,n)^{20}Ne$ and ${}^{17}O(\alpha,\gamma)^{21}Ne$ reaction rates, the α -widths of the states of interest were determined experimentaly for the first time through the measurement of their α -spectroscopic factors. The latter were determined from the α -transfer reaction ${}^{17}O({}^{7}Li,t)^{21}Ne$ measurement [2] performed at MLL-Munich, using the high-energy resolution magnetic spectrometer Q3D. The measured and calculated DWBA differential cross sections of the different populated states will be presented as well as the obtained α -spectroscopic factors and the α -widths of the relevant states in ²¹Ne. Finally, the ¹⁷O(α ,n)²⁰Ne and 17 O(α, γ)²¹Ne reactions rates calculations and their corresponding uncertainties using our obtained α -widths and the most recent measured neutron widths [3] will be presented. Our rates favour the neutron recycling via ${}^{17}O(\alpha,n)^{20}Ne$ reaction instead of losing them via ${}^{17}O(\alpha,\gamma)^{21}Ne$ reaction and suggest an enhancement by a very large factor of the s-elements between Ba and Sr.

[1] U. Frischknecht, R. Hirschi et al., MNRAS 456, 1803 (2016), arXiv:1511.05730 [astro-ph.SR].

[2] F. Hammache, P. Adsley, L. Lamia et al., to be submitted soon

Primary author: Dr HAMMACHE, Faïrouz (IJCLab Orsay)Presenter: Dr HAMMACHE, Faïrouz (IJCLab Orsay)Session Classification: Monday - Session 3