β-decay in Neutron Star Crusts

-Rahul Jain

NPA X Conference, CERN, September 7, 2022

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission

<u>Quiescence</u>: Little/No Accretion Faint X-ray Emission

2

Transient Systems

Accretion Outburst: Rapid Accretion Bright X-ray Emission

<u>Quiescence</u>: Little/No Accretion Faint X-ray Emission

Globular Cluster Terzan 5 with Chandra X-ray Satellite

Rahul Jain, NPA X, CERN

Outburst Phase

Nuclear reactions deposit energy in the crust during outburst.

Quiescence Phase

The crust is thermally relaxed during quiescence.

Brown and Cumming 2009 ApJ 698 1020

4

Quiescence Phase

Brown and Cumming 2009 ApJ 698 1020

e⁻ Captures in Neutron Star Crusts

e⁻ Captures in Neutron Star Crusts

Dominant Cooling Agents

Dominant Cooling Agents

³³Mg: 12 protons, 21 neutrons

³³Mg: 12 protons, 21 neutrons

³³Mg: 12 protons, 21 neutrons

Yordanov et al., Phys. Rev. Lett. **99**, 212501 (2007)

2p - 2h 3/2⁻

³³Mg: 12 protons, 21 neutrons

Tripathi et al., Phys. Rev. Lett. **101**, 142504 (2008)

1p - 1h 3/2⁺

3p - 3h 3/2⁺

8

³³Mg β⁻ decay (90.5 ms) 2008Tr07,2006AnZW

Decay Scheme

First forbidden transition unlikely to have such a large branching ratio.

Rahul Jain, NPA X, CERN

³³Mg Production

³³Mg Production

Experimental Set-up

SuN Detector measures γ -rays to estimate I_{Excited}

NERO Detector measures neutrons to estimate I_{Neutron}

Rahul Jain, NPA X, CERN

β⁻-decay Correlations

b⁻-decay Correlations

b⁻-decay Correlations

Results

Summary

 Urca cooling takes place in the crusts of accreting neutron stars and the cooling strength depends on ground-state to ground-state
β-decay transition strengths of neutron-rich nuclei.

Summary

- Urca cooling takes place in the crusts of accreting neutron stars and the cooling strength depends on ground-state to ground-state
 β-decay transition strengths of neutron-rich nuclei.
- ³³Mg is currently the strongest Urca cooler in our models currently but the discrepancy in its ground state parity needs to be resolved to have better model observation comparisons.

Summary

- Urca cooling takes place in the crusts of accreting neutron stars and the cooling strength depends on ground-state to ground-state
 β-decay transition strengths of neutron-rich nuclei.
- ³³Mg is currently the strongest Urca cooler in our models currently but the discrepancy in its ground state parity needs to be resolved to have better model observation comparisons.
- This is another example of how nuclear structure effects manifest in astrophysical systems.

Thank you!

Shallow Heat Source

A Turlione et al., A&A 577, A5 (2015)

Artificial heat source has to be accounted for to match models to observations for almost all systems.

Nuclear Inputs for Urca Cooling Luminosity

Impact of Urca Cooling

Meisel, Zach, Physics & Astronomy Open Access Publications. 146.

Introducing Urca Cooling changes both the temperature profile in the crust as well as the resulting cooling curves

Pandemonium Effect and TAS

Previous Results at NSCL

W J Ong et al Phys. Rev. Lett. **125**, 262701

Mass A = 61 chain is not as strong a cooler as previously expected based on 61 V - 61 Cr transition.