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Three-color images of the globular cluster Terzan 5, 
obtained with the Chandra X-ray satellite.
Image source: Nathalie Degenaar, Wordpress Blog 
‘Now you see me, now you don’t’, 2011.

Image Source: Rudy Wijnands
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Type I X-ray bursts

Superbursts

Crustal Heating

Deep Crustal Heating

Accretion 
Outbursts

Nuclear reactions deposit 
energy in the crust during 

outburst.
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The crust is thermally 
relaxed during 

quiescence.

Brown and Cumming 2009 ApJ 698 1020
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Brown and Cumming 2009 ApJ 698 1020
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Fermi Energy of the electron helps 
overcome Electron Capture Threshold
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β- - decay not allowed since the 
emitted electron has no phase space



Urca Cooling
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Fermi Energy of electron has a spread 
at finite temperature
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EF > |QEC|

Urca Cooling Layer
 EF ~ |QEC| (kBT)

Only gs-gs transitions important.
Low-lying excited within k

B
T also contribute.
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Schatz et al., Nature 505, 62-65 (2014).
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Schatz et al., Nature 505, 62-65 (2014).

33Mg          33Al
(X-ray burst ashes)
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33Mg: 12 protons, 21 neutrons

0p - 0h
7/2-

1p - 1h
3/2+

2p - 2h
3/2-

3p - 3h
3/2+

Yordanov et al., Phys. 
Rev. Lett. 99, 212501 

(2007)
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33Mg: 12 protons, 21 neutrons

0p - 0h
7/2-

1p - 1h
3/2+

2p - 2h
3/2-

3p - 3h
3/2+

Tripathi et al., 
Phys. Rev. Lett. 
101, 142504 

(2008)



33Mg ground-state Anomaly
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First forbidden transition 
unlikely to have such a 
large branching ratio.
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TOF measurement

• 40Ar primary beam
• 33Mg cocktail secondary beam
• Proposal accepted and tentatively 

scheduled in Fall 2020

S2 Vault 
Decay Station

I2 scintillator

Si PIN detectors

9Be Target

• 40Ar primary beam.
• 33Mg secondary beam.
• 72 hours of beamtime.

Particle ID by dE-TOF 
between XFP and PIN

Adapted from NSCL
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A1900 fragment 
separator settings 
optimized for 33Mg
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I
gs

 = I
Total

 - I
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 - I
Neutron

SuN Detector measures 
𝛄-rays to estimate I

Excited

NERO Detector measures 
neutrons to estimate I

Neutron
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𝝌2/dof = 1.28

T1/2= 90.08(65) ms

Pn= 14.2(65)%
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● Urca cooling takes place in the crusts of accreting neutron stars 
and the cooling strength depends on ground-state to ground-state 
𝞫-decay transition strengths of neutron-rich nuclei. 
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● Urca cooling takes place in the crusts of accreting neutron stars 
and the cooling strength depends on ground-state to ground-state 
𝞫-decay transition strengths of neutron-rich nuclei. 

● 33Mg is currently the strongest Urca cooler in our models currently 
but the discrepancy in its ground state parity needs to be resolved 
to have better model observation comparisons. 

● This is another example of how nuclear structure effects manifest 
in astrophysical systems. 

  Thank you! 



Backup



Shallow Heat Source
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XTE J1701-462 IGR J17480-2446

Strong and shallow 
Artificial Heat 
Source

Weak but deeper 
Artificial Heat 
Source

A Turlione et al., A&A 577, A5 (2015)

Artificial heat source has to be accounted for to match 
models to observations for almost all systems. 



Nuclear Inputs for Urca Cooling Luminosity
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gs-gs β- - decay 
transition strengths

Nuclear Masses

Mass Fraction



Impact of Urca Cooling
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Introducing Urca Cooling changes both the temperature 
profile in the crust as well as the resulting cooling curves

55Ca - 55Sc

55Ca - 55Sc

Meisel, Zach, Physics & Astronomy Open Access Publications. 146.



Pandemonium Effect and TAS
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Previous Results at NSCL
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W J Ong et al Phys. 
Rev. Lett. 125, 262701

Mass A = 61 chain is not as strong a cooler as 
previously expected based on 61V - 61Cr transition.


