Nuclear Physics in Astrophysics - X Contribution ID: 133 Type: Poster ## New results on the level structure of 26 Si and consequences for the 25 Al(p, γ) 26 Si reaction in Classical Novae environments Tuesday 6 September 2022 18:50 (2 minutes) The 25 Al(p, γ) 26 Si reaction is of tremendous interest in nuclear astrophysics. The production of the γ -ray emitter 26 Al ground state can be bypassed in classical novae via the production of 26 Si which decays to an isomeric state of 26 Al. In order to more precisely estimate the amount of 26 Al that is of classical novae origin, it's crucial to determine the rate of the 25 Al(p, γ) 26 Si reaction at nova-burning temperatures. The production of 26 Si is dominated by resonant captures to several excited states above the proton threshold in 26 Si. There has been considerable experimental effort in recent years to observe and identify theses states [1], but the properties of the key resonances in 26 Si remain unsettled. The combination of GRETINA [2] coupled with the Fragment Mass Analyzer (FMA) [3] at Argonne National Laboratory (ANL), provided a powerful opportunity to identify transitions in 26 Si, owing to the large acceptance of the separator and the Doppler-reconstruction capabilities and high-energy efficiency of the GRETINA array. The experiment, presented here, follows an earlier γ -ray spectroscopy study of the 26 Si mirror nucleus, 26 Mg, performed with Gammasphere at ANL where a l=1 resonance was identified for the first time (fig.1) [4]. In the same study, the lifetime of the 3+, 6125-keV state in 26 Mg was measured via the Doppler shift attenuation method. The 3+, 414-keV resonance in 26 Si dominates the 25 Al(p, γ) reaction over most of the novae peak temperature range, while the introduction of the new 1- state increases the reaction rate by 25 % at the highest novae temperatures. In this talk, new results on 26 Si from the GRETINA+FMA study will be presented along with further information gained on the A=26 system. Information on both the level structure of 26 Si and the impact on the astrophysical 25 Al(p,y) 26 Si reaction will be discussed. - [1] K. Chipps, Phys. Rev. C 93, 035801 (2016). - [2] D. Weisshaar et al, Nucl. Instrum. Methods Phys. Res. A 847, 187 (2017). - [3] C.N. Davis et al., Nucl. Instrum. Methods Phys. Res. B 70, 358 (1992). - [4] L. Canete et al, Phys. Rev. C 104, L022802 (2021). ## Field of work Author: Dr CANETE, Laetitia Presenter: Dr CANETE, Laetitia Session Classification: Poster session