Nuclear Physics in Astrophysics - X

Contribution ID: 28

Type: Oral

Direct measurement of the low energy resonances in $22Ne(\alpha, \gamma)26Mg$ reaction

Wednesday 7 September 2022 15:15 (15 minutes)

The $^{22}\mathrm{Ne}(\alpha,\gamma)^{26}\mathrm{Mg}$ is an important reaction in stellar helium burning environments as it competes directly with one of the main neutron source for the s-process $^{22}\mathrm{Ne}(\alpha,n)^{25}\mathrm{Mg}$ reaction. The reaction rate of the $^{22}\mathrm{Ne}(\alpha,\gamma)^{26}\mathrm{Mg}$ reaction is dominated by low energy energy resonances at E_R^{lab} = 0.65, 0.83 MeV. The E_R^{lab} = 0.83 MeV resonance has been measured previously using both direct and indirect detection techniques, but there are large uncertainties in the previous measurements. We confirmed the measurement of the E_R^{lab} = 0.83 MeV resonance using solid implanted $^{22}\mathrm{Ne}$ target and provide a resonance strength ($\omega\gamma$ = 35 \pm 4 μeV) with smaller uncertainties. We also measured the E_R^{lab} = 851 keV resonance in $^{22}\mathrm{Ne}(p,\gamma)^{23}\mathrm{Na}$, and obtained a resonance strength ($\omega\gamma$ = 9.15 \pm 0.7 eV), with significantly lower uncertainties compared to previous measurements. The other low energy resonance in $^{22}\mathrm{Ne}(\alpha,\gamma)^{26}\mathrm{Mg}$ at

 E_R^{lab} = 0.65 MeV, was measured directly for the first time and we provide an upper limit of $\omega\gamma < 0.028~\mu eV$ for this resonance.

Field of work

Author: Ms SHAHINA (University of Notre Dame)

Co-authors: Ms KELMAR, R.; Dr GORRES, J.; WIESCHER, Michael; Dr ROBERTSON, D.; Dr SIMON, A.; Dr STECH, E.; COUDER, Manoel (University of Notre Dame); GOMEZ, O.; GULA, A.; SCHOLZ, Philipp (Institute for Nuclear Physics, University of Cologne); HANHARDT, M.; KADLECEK, T.; Dr STRIEDER, F.

Presenter: Ms SHAHINA (University of Notre Dame)

Session Classification: Wednesday - Session 3