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Rare-Earth Peak in the r-process
• Rare-earth peak (REP) forms during the “freeze-out” of the r-pcoess                


• Details of nuclear physics inputs 
affect the features of the peak


- Competition between 
-decay and -capture 


- -delayed -emission  
provide extra neutrons  
during freeze-out


- Fission 


• Recent -decay experiment by 
the BRIKEN collaboration
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FIG. 2 Solar r-process abundances as determined by Cowan
et al. (1991) and Goriely (1999). The largest uncertainties
are clearly visible for A . 100 (weak s process region) and
around lead.

its overall neutron-capture element level is depressed rel-
ative to Fe (Sneden and Parthasarathy 1983, see also the
more extensive analysis of Honda et al. 2006). An ini-
tial abundance survey in metal-poor (MP) stars (Gilroy
et al., 1988) considered 20 red giants, finding a common
and easily spotted pattern of increasing overabundances
from Ba (Z = 56) to Eu (Z = 63) among the rare-
earth elements. With better echelle spectrographic data
came discoveries of many more r-process-rich stars, lead-
ing Beers and Christlieb (2005) to sub-classify them as
“r-I” with 0.3  [Eu/Fe]  +1.0 and [Ba/Eu] < 0, and
as “r-II” with [Eu/Fe] > +1.0 and [Ba/Eu] < 0.

The most detailed deconvolution of abundances into
nucleosynthetic contributions exists for the solar system,
as we have accurate abundances down to the isotopic
level as a result of meteoritic and solar atmospheric mea-
surements (e.g. Cameron, 1959; Asplund et al., 2009;
Lodders et al., 2009, see Fig. 1). Identifying the r-
process contributions to the solar system neutron-capture
abundances is usually accomplished by first determining
the s-process fractions, (e.g. Käppeler, 1999; Arlandini
et al., 1999; Burris et al., 2000; Käppeler et al., 2011).
The remaining (residual) amount of the total elemental
abundance is assumed to be the solar r-process contri-
bution (see Figures 1 and 2). Aside from the so-called
p-process (Arnould and Goriely, 2003; Rauscher et al.,
2013; Nishimura et al., 2018) that accounts for the minor
heavy element isotopes on the proton-rich side of the val-
ley of instability, as well as the ⌫-process (Woosley et al.,
1990) and the ⌫p-process (Fröhlich et al., 2006b), only
the s and r-processes are needed to explain nearly all of
the solar heavy element abundances.

Early observations of CS 22892-052 (Sneden et al.,
1994, 2003) and later CS 31082-001 (Hill et al., 2002;
Siqueira Mello et al., 2013) and references therein), in-
dicated a “purely” or “complete” solar system r-process
abundance pattern (see Figure 3). The total abundances

of these, mostly rare-earth, elements in the stars were
smaller than in the Sun but with the same relative pro-
portions, i.e., scaled. This indicated that these stars, that
likely formed early in the history of the Galaxy, experi-
enced already a pollution by a robust r-process.

!"#$%&'()$*+,-'.

FIG. 3 Top panel: neutron-capture abundances in 13 r-
II stars (points) and the scaled solar-system r-process-only
abundances of (Siqueira Mello et al., 2013), mostly adopted
from (Simmerer et al., 2004). The stellar and solar sys-
tem distributions have been normalized to agree for ele-
ment Eu (Z = 63), and than vertical shifts have been ap-
plied in each case for plotting clarity. The stellar abundance
sets are: (a) CS 22892-052, (Sneden and Cowan, 2003); (b)
HD 115444, (Westin et al., 2000); (c) BD+17 3248, (Cowan
et al., 2002); (d) CS 31082-001, (Siqueira Mello et al., 2013);
(e) HD 221170, (Ivans et al., 2006); (f) HD 1523+0157,
(Frebel et al., 2007); (g) CS 29491-069, (Hayek et al., 2009);
(h) HD 1219-0312, (Hayek et al., 2009); (i) CS 22953-003,
(François et al., 2007); (j) HD 2252-4225, (Mashonkina et al.,
2014); (k) LAMOST J110901.22+075441.8, (Li et al., 2015);
(l) RAVE J203843.2-002333, (Placco et al., 2017); (m) 2MASS
J09544277+5246414, (Holmbeck et al., 2018). Bottom panel:
mean abundance di↵erences for the 13 stars with respect to
the solar system r-process values.

However, the growing literature on abundance analyses
of VMP stars has added to our knowledge of the aver-
age r-process pattern, and has served to highlight depar-
tures from that pattern. Additions to the observational
results since the review of Sneden et al. (2008) include
Roederer et al. (2010b, 2014a); Li et al. (2015); Roed-
erer et al. (2016); Roederer (2017); Aoki et al. (2017);

From Cowan et al. (2021), Rev. Mod. Phys. 93, 015002
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Slide courtesy of  
R. Caballero-Folch (TRIUMF) 

& C. J. Griffin (TRIUMF)

For more details about BRIKEN, see talk by Alvaro Tolosa Delgado  
and poster by Max Pallas I Solis
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BRIKEN project background: BELEN detector (2009-2014) – BRIKEN 2016-2021

30 3He counters 
in 2 rings. GSI-

FRS (2011).
ε!" ≈ 38%

48 3He counters in 
3 rings. IGISOL 

Jyväskylä (2014).
ε!" ≈ 40% (HPGe)

ε!" ≈ 60%

140 3He counters in 
7 rings.

BRIKEN (2016…)
ε!" ≈ 68.6% (HPGe)

20 3He counters 
in 2 rings. IGISOL 
Jyväskylä (2010).

ε!" ≈ 47%

All efficiencies are up to 1MeV, beam hole and counter location dependant.
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4Experiment and analysis overview

•  and  of   
159–166Pm, 161–168Sm,  
165–170Eu, and 167–172Gd  
(28 isotopes, 9 new  and all new ) 


• Data analysis led by  
G. Kiss and A. Vitéz-Sveiczer (ATOMKI)


P1n T1/2

T1/2 P1n
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Figure 4. (Color online) Experimental half-lives derived in the present work (black squares) and taken from the literature
(Wu et al. 2017) (red circles). Lines show the theoretical values from three models (Möller et al. 2019; Marketin et al. 2016;
Ney et al. 2020).

Table 1. Half-lives and �-delayed neutron emission probabilities (P1n) measured in the present work. The half-lives tagged
with an asterisk (*) may include both ground-state and isomeric state decays (for details see text).

Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n

[ms] [%] [ms] [%] [ms] [%] [ms] [%]

159Pm 1648+43
�42  0.6 166Pm 228+131

�112  52 167Sm 334+83
�78  16 170Eu 197+74

�71  24
160Pm⇤ 874+16

�12  0.1 161Sm 4349+425
�441  2.7 168Sm 353+210

�164  21 167Gd 2269+1817
�988  12

161Pm 724+20
�12 1.09+0.11

�0.11
162Sm 3369+200

�303  1.0 165Eu⇤ 2163+139
�120  0.4 168Gd 2947+467

�387  0.8
162Pm 467+38

�18 1.79+0.19
�0.19

163Sm 1744+180
�204  0.1 166Eu 1277+100

�145 0.63+0.17
�0.17

169Gd⇤ 926+95
�102  0.7

163Pm⇤ 362+42
�30 5.00+0.73

�0.74
164Sm 1422+54

�59  0.7 167Eu 852+76
�54 1.95+0.38

�0.38
170Gd 675+94

�75  3
164Pm 280+38

�33 6.18+1.80
�1.79

165Sm 592+51
�55 1.36+0.40

�0.40
168Eu 440+48

�47 3.95+0.83
�0.83

171Gd 392+145
�136  10

165Pm 297+111
�101 13.26+6.23

�6.15
166Sm 396+56

�63 4.38+1.25
�1.38

169Eu 389+92
�88 14.62+5.82

�5.09
172Gd 163+113

�99  50

G. Kiss, A. Vitéz-Sveiczer, YS, et al., APJ (2022)
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•  and  of   
159–166Pm, 161–168Sm,  
165–170Eu, and 167–172Gd  
(28 isotopes, 9 new  and all new ) 


• Data analysis led by  
G. Kiss and A. Vitéz-Sveiczer (ATOMKI)


P1n T1/2

T1/2 P1n

G. Kiss, A. Vitéz-Sveiczer, YS, et al., APJ (2022)
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Figure 5. (Color online) Experimental P1n values derived in this work. Lines show the theoretical values from three models
(Möller et al. 2019; Marketin et al. 2016; Minato et al. 2021).

4. ASTROPHYSICAL IMPLICATION OF THE EXPERIMENTAL RESULTS191

Several authors have proposed that during the r-process freeze-out the competition between ��-decays and neutron192

captures shape the REP while the material decays back to stability (Surman et al. 1997; Surman & Engel 2001; Arcones193

& Mart́ınez-Pinedo 2011; Mumpower et al. 2012). Neutron emission following ��-decays of neutron-rich nuclei may194

also have a significant impact on the abundance pattern by providing additional neutrons to the environment and195

changing the mass number of the nuclide. Therefore, it is important to understand the relationship between the196

r-process abundance pattern and nuclear observables, such as �-decay half-lives (T1/2) and �-delayed neutron emission197

probabilities (Pn values).198

4.1. Method199

With respect to the current experimental values and their uncertainties, we perform an uncertainty quantification200

and a variance-based sensitivity analysis (Saltelli et al. 2010) of the calculated r-process abundance pattern. As201

discussed in detail below, by treating the physical quantities of interest, namely T1/2 and P1n, as variable inputs of202

nuclear reaction network calculation, we can assess their influence on the calculated abundance patterns.203

4.1.1. Uncertainty quantification204

Uncertainty quantification reveals how the uncertainties of the nuclear observables collectively translate to the205

uncertainty of the calculated abundance pattern. This has been performed in various previous studies (Mumpower206

Experiment and analysis overview



6

Snapshot of nucleosynthesis in NS merger

Experiment and analysis overview

•  and  of   
159–166Pm, 161–168Sm,  
165–170Eu, and 167–172Gd  
(28 isotopes, 9 new  and all new ) 


• Data analysis led by  
G. Kiss and A. Vitéz-Sveiczer (ATOMKI)


• Astrophysical analysis (YS)

➡ How do the -decay properties of the 28 nuclei affect the formation of  

the r-process rare earth peak (REP)?


• Published yesterday on ApJ: G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022), APJ, 936:107

P1n T1/2

T1/2 P1n

β
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Propagated uncertainty
• Half-life uncertainty:


1. Wu et al. PRL (2017) + 
“factor of 10” uncertainty for FRDM+QRPA 
(as in Mumpower et al. PrPNP (2016))


2. Our results (G. Kiss et al. APJ (2022))


• Astrophysical conditions:

A. Neutron star merger dynamical ejecta  

(Vassh et al., JPhG (2019))

B. Hot neutrino driven wind  

(Mumpower et al. PrPNP (2016))


In all the calculations, our new  values are used.


• Where does the uncertainty come from?

P1n

Abundance matched at A=157A

B

1
2

1
2



9Variance-based sensitivity analysis

Exp. uncertainty of 
 and T1/2 P1n V(Y)

Monte Carlo sampling  
and abundance calculations

e.g. A=168NS merger Hot wind

 
60.9 %

T1/2(168Sm)

 
24.3 %

T1/2(168Gd)
T1/2(167Gd)
P1n(169Eu)

 
96.1 %

T1/2(168Sm)

Other  
contributions

Variance decomposition

V(Y)

A. Saltelli, et al. 2010, Computer Physics Communications, 181, 259

T1/2(168Sm) = 353+210
−164 [ms]



• Dominant contribution from the half-lives in both astrophysical scenarios (~90%)


• Strong contribution from (168Sm) to mass numbers A=168–173


• -decay  of nuclei synthesized at the beginning of freeze-out  
may strongly affect the flow of n capture


• For full results, ask me or see G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022), APJ, 936:107

T1/2

β T1/2

10

Variance-based sensitivity analysis results



11

Towards scalable statistical analyses 
• To draw more general conclusions, more isotopes and  

more types of nuclear physics inputs should be included

➡ Cost may become prohibitive (millions of calculations required)


• Challenging to accelerate nuclear reaction network calculations with GPUs 
(Work by Paul Virally (U. Waterloo))


• An emulator would significantly reduce the computational cost

➡ Model the map between  

input (nuclear physics) and output (abundance pattern)

➡ One run is significantly cheaper than a full abundance calculation
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Towards scalable statistical analyses

• 212 isotopes


• Variables:  and   
(propagated to  

-capture rate) 
=  variable inputs


• Emulate abundance  
calculations with  
artificial neural network 
(ANN) 

T1/2 Sn

n
424



13Artificial Neural Network Emulator

Simultaneously vary

• -decay half-lives


•  (propagated to  
 capture rate) 

β
Sn
n
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tain light r-process elements with a negligible mass frac-
tion of lanthanides/actinides Xlan . 10�4 (Kasen et al.,
2017). The mass fraction of lanthanides/actinides neces-
sary to account for the reddening of the spectra has been
inferred to be Xlan ⇠ 10�3–10�2 (Kasen et al., 2017;
Tanaka et al., 2017; Waxman et al., 2018) and hence con-
tains both light and heavy r-process material assuming
solar proportions. The purple component corresponds
to ejecta with a small, but non-negligible, lanthanide
fraction. The early blue emission has been interpreted
to originate from the fastest ourter layers of the ejecta
originating from material ejected in the polar direction
and containing exclusively light r-process nuclei (Metzger
and Fernández, 2014; Nicholl et al., 2017b; Drout et al.,
2017) (see however, Waxman et al., 2018; Kawaguchi
et al., 2018, for alternative explanations). The later tran-
sition of the emission colors to the near infrared sug-
gest ejecta containing high r-process elements originat-
ing from the post-merger accretion disk ejecta given their
smaller velocities and larger masses (Siegel and Metzger,
2017; Siegel and Metzger, 2018; Kasen et al., 2017; Perego
et al., 2017a; Fernández et al., 2019; Siegel, 2019) (see
section VI.B). The total amount of ejecta has been es-
timated to be Mej ⇡ 0.03–0.08 M� (Kasen et al., 2017;
Kasliwal et al., 2017; Cowperthwaite et al., 2017; Perego
et al., 2017a; Villar et al., 2017; Waxman et al., 2018;
Kawaguchi et al., 2018). This milestone observation pro-
vided the first direct indication that r-process elements
are produced in neutron-star mergers including estimates
of the amount of ejecta, composition and morphology.
Additional information about kilonova modeling and the
connection of these observations with models of compact
binary mergers can be found in section VII.

III. BASIC WORKING OF THE R-PROCESS AND
NECESSARY ENVIRONMENT CONDITIONS

A. Modeling Composition Changes in Astrophysical
Plasmas

Before discussing the working of the r-process in detail,
a short introduction into the methods should be given,
how the build-up of elements in astrophysical plasmas
can be described and determined. The mechanism to
model composition changes is based on nuclear reactions,
occurring in environments with a given temperature and
density. Integrating the reaction cross section �(E) over
the energy distribution of reacting partners at a given T ,
abbreviated as h�vi(T ), determines the probability for
reactions to happen. For most conditions in stellar evo-
lution and explosions a Maxwell-Boltzmann distribution
is attained (e.g. Clayton, 1968; Rolfs and Rodney, 1988;
Iliadis, 2007; Lippuner and Roberts, 2017). Nuclear de-
cays can be expressed via the decay constant �, related
to the half-life of a nucleus t1/2 via � = ln 2/t1/2. Interac-

tions with photons (photodisintegrations) are described
by the integration of the relevant cross section over the
energies of the photon Planck distribution for the local
temperature. This results in an e↵ective (temperature-
dependent) “decay constant” �(T ). Reactions with elec-
trons (electron captures on nuclei) (e.g. Fuller et al.,
1980; Langanke and Mart́ınez-Pinedo, 2001; Langanke
and Mart́ınez-Pinedo, 2003; Juodagalvis et al., 2010) or
neutrinos (e.g. Langanke and Kolbe, 2001, 2002; Kolbe
et al., 2003) can be treated in a similar way, also re-
sulting in e↵ective decay constants �, which can depend
on temperature T and density ⇢ (determining for elec-
trons whether degenerate or non-degenerate Fermi dis-
tributions are in place). The �’s for neutrinos require
their energy distributions (Tamborra et al., 2012) from
detailed radiation transport, not necessarily reflecting
the local conditions (see e.g. Liebendörfer et al., 2005,
2009; Richers et al., 2017; Janka, 2017b; Burrows et al.,
2018; Pan et al., 2019).

All these reactions contribute to changes of the abun-
dances Yi, related to number densities ni = ⇢Yi/mu and
mass fractions of the corresponding nuclei via Xi = AiYi,
where Ai is the mass number of nucleus i,

P
i Xi = 1, ⇢

denotes the density of the medium, and mu the atomic
mass unit. The reaction network equations for the time
derivatives of the abundances Yi include three types of
terms (e.g., Hix and Thielemann, 1999)

dYi

dt
=

X

j

P i
j �jYj +

X

j,k

P i
j,k

⇢

mu
hj, kiYjYk (1)

+
X

j,k,l

P i
j,k,l

⇢2

m2
u

hj, k, liYjYkYl.,

summing over all reaction partners related to the dif-
ferent summation indices. The P’s include an integer
(positive or negative) factor N i (appearing with one,
two or three lower indices for one-body, two-body, or
three-body reactions), describing whether (and how of-
ten) nucleus i is created or destroyed in this reaction.
Additional correction factors 1/m! are applied for two-
body and three-body reactions in case two or even three
identical partners are involved. This leads to P i

j = N i
j ,

P i
j,k = N i

j,k/m(i, j)!, or P i
j,k,l = N i

j,k,l/m(i, j, k)!. m(i, j)
is equal to 1 for i 6= j and 2 for i = j, m(i, j, k) can have
the values 1 (for non-identical reaction partners), 2 for
two identical partners, and 3 for the identical partners.
Thus, this (additional) correction factor is 1 for non-
identical reaction partners, 1/2=1/2! for two identical
partners or even 1/6=1/3! for three identical partners.
The �’s stand for decay rates (including decays, photodis-
integrations, electron captures and neutrino-induced re-
actions), hj, ki for h�vi of reactions between nuclei j and
k. Although in astrophysical environments true three-
body reactions are negligible, a sequence of two two-body
reactions — with an intermediate extremely short-lived

Solve nuclear reaction  
network ODE:
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tain light r-process elements with a negligible mass frac-
tion of lanthanides/actinides Xlan . 10�4 (Kasen et al.,
2017). The mass fraction of lanthanides/actinides neces-
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a short introduction into the methods should be given,
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Iliadis, 2007; Lippuner and Roberts, 2017). Nuclear de-
cays can be expressed via the decay constant �, related
to the half-life of a nucleus t1/2 via � = ln 2/t1/2. Interac-

tions with photons (photodisintegrations) are described
by the integration of the relevant cross section over the
energies of the photon Planck distribution for the local
temperature. This results in an e↵ective (temperature-
dependent) “decay constant” �(T ). Reactions with elec-
trons (electron captures on nuclei) (e.g. Fuller et al.,
1980; Langanke and Mart́ınez-Pinedo, 2001; Langanke
and Mart́ınez-Pinedo, 2003; Juodagalvis et al., 2010) or
neutrinos (e.g. Langanke and Kolbe, 2001, 2002; Kolbe
et al., 2003) can be treated in a similar way, also re-
sulting in e↵ective decay constants �, which can depend
on temperature T and density ⇢ (determining for elec-
trons whether degenerate or non-degenerate Fermi dis-
tributions are in place). The �’s for neutrinos require
their energy distributions (Tamborra et al., 2012) from
detailed radiation transport, not necessarily reflecting
the local conditions (see e.g. Liebendörfer et al., 2005,
2009; Richers et al., 2017; Janka, 2017b; Burrows et al.,
2018; Pan et al., 2019).

All these reactions contribute to changes of the abun-
dances Yi, related to number densities ni = ⇢Yi/mu and
mass fractions of the corresponding nuclei via Xi = AiYi,
where Ai is the mass number of nucleus i,

P
i Xi = 1, ⇢

denotes the density of the medium, and mu the atomic
mass unit. The reaction network equations for the time
derivatives of the abundances Yi include three types of
terms (e.g., Hix and Thielemann, 1999)

dYi

dt
=

X

j

P i
j �jYj +

X

j,k

P i
j,k

⇢

mu
hj, kiYjYk (1)

+
X

j,k,l

P i
j,k,l

⇢2

m2
u

hj, k, liYjYkYl.,

summing over all reaction partners related to the dif-
ferent summation indices. The P’s include an integer
(positive or negative) factor N i (appearing with one,
two or three lower indices for one-body, two-body, or
three-body reactions), describing whether (and how of-
ten) nucleus i is created or destroyed in this reaction.
Additional correction factors 1/m! are applied for two-
body and three-body reactions in case two or even three
identical partners are involved. This leads to P i

j = N i
j ,

P i
j,k = N i

j,k/m(i, j)!, or P i
j,k,l = N i

j,k,l/m(i, j, k)!. m(i, j)
is equal to 1 for i 6= j and 2 for i = j, m(i, j, k) can have
the values 1 (for non-identical reaction partners), 2 for
two identical partners, and 3 for the identical partners.
Thus, this (additional) correction factor is 1 for non-
identical reaction partners, 1/2=1/2! for two identical
partners or even 1/6=1/3! for three identical partners.
The �’s stand for decay rates (including decays, photodis-
integrations, electron captures and neutrino-induced re-
actions), hj, ki for h�vi of reactions between nuclei j and
k. Although in astrophysical environments true three-
body reactions are negligible, a sequence of two two-body
reactions — with an intermediate extremely short-lived

Solve nuclear reaction  
network ODE:
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ANN Emulator

•  and  of 212 isotopes 
(propagated to -capture rate) 
=  variable inputs


• ~300 ms per prediction 
(cp. One full network  
calculation ~300 s)


• With uncertainty quantification 
of each prediction

T1/2 Sn
n

424

< 5% error for unseen data  
after training with 300k samples

Full abundance calculations 
for NS merger (PRISM) Emulated abundance calculations

YS, et al. in preparation

PRISM: M. Mumpoer (LANL) and T. Sprouse (LANL)
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Summary and outlook
• Astrophysical implication of new  and  data in the REP region


➡  of influential isotopes affect the flow of -capture

➡ Nuclei synthesized right before neutrons are exhausted may be important


• Variance-based sensitivity analysis

➡ Identify inputs where abundance uncertainty comes from


G. Kiss, A. Vitéz-Sveiczer, YS, et al., (2022), APJ for more detail


• ANN-based abundance calculation emulator

➡ Enables further sensitivity analysis and various statistical inference tasks


Manuscripts in preparation 
 
Collaborators: I. Dillmann (TRIUMF), R. Kruecken (UBC/TRIUMF/LBNL) 
                         M. Mumpower (LANL), R. Surman (U. Notre Dame) 
                         A. Ravlic (U. Zagreb), N. Paar (U. Zagreb), F. Minato (JAEA)

T1/2 P1n
T1/2 n



Thank you!

Merci!	 	  

www.triumf.ca 
Follow us @TRIUMFLab
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• Dominant contribution from the uncertainty of half-lives in both astrophysical scenarios
 18

Variance-based sensitivity analysis results

14

Table 2. Table of nuclear input variables that have a significant contribution to the uncertainties of the calculated abundances
for A = 168-173 in the neutron star merger scenario. Columns 4–9 show the first-order sensitivity indices (S(1)), which
represent the contribution of individual variables to the abundance uncertainty, with 95 % confidence intervals. The maximum
relative uncertainty (third column) is the ratio of the size of the larger one of upper or lower experimental uncertainty to
the nominal value, in percentage. (100) indicates that the P1n value only has an upper limit and the size of its relative
uncertainty is 100%, according to the convention in Dimitriou et al. (2021). Long dashes (—) indicate that the nominal value
of 100 ⇥ S(1) is smaller than 0.5 [%]. Values larger than 10 [%] are highlighted in boldface. Complete tables are given in
Appendix B.

Max. relative 100⇥S(1) (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 1.9 (± 1.1) 3.2 (± 1.5) 4.9 (± 1.9) 2.7 (± 1.5) 0.8 (± 0.9) —
166Pm T1/2 57.5 — — 0.5 (± 0.6) 0.7 (± 0.7) — —
166Sm T1/2 15.9 — 1.7 (± 1.2) 4.8 (± 1.9) 3.8 (± 1.7) 1.5 (± 1.0) 0.8 (± 0.7)
167Sm T1/2 24.9 0.6 (± 0.6) — — 1.1 (± 0.9) 0.9 (± 0.8) 0.6 (± 0.7)
168Sm T1/2 59.5 60.9 (± 6.6) 55.1 (± 7.1) 14.6 (± 4.4) 32.6 (± 5.0) 43.5 (± 5.5) 41.6 (± 5.6)
168Eu T1/2 10.9 0.5 (± 0.7) — — — — —
169Eu T1/2 23.7 — 3.6 (± 1.4) — — 0.9 (± 0.8) 0.7 (± 0.7)
170Eu T1/2 37.6 — — 0.6 (± 0.9) — — —
167Gd T1/2 80.1 6.1 (± 2.5) 26.6 (± 4.3) 34.2 (± 6.2) 14.6 (± 3.9) 3.5 (± 1.8) 1.2 (± 1.1)
168Gd T1/2 15.8 24.3 (± 4.6) 8.3 (± 2.7) 8.1 (± 2.8) 2.2 (± 1.5) — —
169Gd T1/2 11.0 — 0.8 (± 0.8) — — — —
170Gd T1/2 13.9 — — 25.2 (± 4.7) 1.4 (± 1.2) 2.6 (± 1.4) 3.5 (± 1.7)
171Gd T1/2 37.0 — — — 20.5 (± 4.1) 4.6 (± 2.0) 1.0 (± 1.1)
172Gd T1/2 69.3 — — — 3.6 (± 2.1) 35.7 (± 5.1) 49.3 (± 5.9)
165Pm P1n 47.0 — 0.6 (± 0.6) 0.7 (± 0.5) — — —
168Sm P1n (100) — — — 0.8 (± 0.8) 0.6 (± 0.6) —
169Eu P1n 39.8 5.4 (± 2.1) — 3.7 (± 1.6) 3.6 (± 1.7) 1.3 (± 1.0) 0.6 (± 0.7)
170Eu P1n (100) — 0.5 (± 0.6) — — — —
172Gd P1n (100) — — — 5.5 (± 2.0) 3.2 (± 1.5) 0.6 (± 0.7)

S(1)(T1/2) total: 94.9 (± 8.6) 100.1 (± 9.2) 93.9 (± 9.9) 84.0 (± 8.5) 95.1 (± 8.3) 99.7 (± 8.6)

S(1)(P1n) total: 5.9 (± 2.3) 1.1 (± 1.1) 5.6 (± 2.0) 11.0 (± 2.9) 5.7 (± 2.0) 2.0 (± 1.1)

S(1) total: 100.9 (± 8.9) 101.3 (± 9.2) 99.5 (± 10.1) 95.0 (± 9.0) 100.7 (± 8.6) 101.6 (± 8.6)

more fragmented across the input variables compared to the case shown in Table 2, elevating the relative sensitivity382

of the half-lives of the gadolinium isotopes.383

Therefore, the half-lives of gadolinium isotopes may be considered significant sources of uncertainty of the calculated384

abundances in addition to the 168Sm half-life, within the set of isotopes of interest in the current study.385

4.2.3. Impact of 168Sm half-life during the freeze-out386

By inspecting the samples generated for the variance-based sensitivity analysis, one may learn how the abundances387

depend on the nuclear physics inputs. We again take the half-life of 168Sm as an example to demonstrate this, focusing388

on the neutron star merger scenario. Figure 10 shows the correlations of abundances for several mass numbers with389

the half-life of 168Sm. Comparing the panels (a) and (b) of the figure, it can be seen that the abundance has a clear390

correlation with the half-life when the sensitivity index is large.391

The mechanism of this correlation becomes clear by analyzing the abundance flows due to �-decay and neutron392

capture. Figure 11 shows the relative isotopic abundances as functions of time (upper panels), the abundance flows393

(middle panels) and their total contributions, i.e. integrals of the abundance flows over time (lower panels) due to394

neutron capture and �-decay (labeled as (n, �) and �� in the figure, respectively) for 168Sm, 168Eu, and 168Gd. They395

are separated into two cases: the sampled half-life of 168Sm is larger than 0.55 [s] (Case 1) or smaller than 0.20 [s]396
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Table 3. Table of nuclear physics inputs that have a significant contribution to the uncertainties of calculated abundances
for A = 168-173 in the hot wind scenario. Columns 4–9 show the first-order sensitivity indices (S(1)), which represent the
contribution of individual variables to the abundance uncertainty, with 95 % confidence intervals. The maximum relative
uncertainty (third column) is the ratio of the size of the larger one of upper or lower experimental uncertainty to the nominal
value, in percentage. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%,
according to the convention in Dimitriou et al. (2021). Long dashes (—) indicate that the nominal value of 100⇥S(1) is smaller
than 0.5 [%]. Values larger than 10 [%] are highlighted in boldface. Complete tables are given in Appendix B.

Max. relative 100⇥S(1) (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 — 0.5 (± 0.6) — — — —
168Sm T1/2 59.5 96.1 (± 14.1) 71.4 (± 7.0) 95.2 (± 8.2) 56.8 (± 7.1) 44.6 (± 7.2) 80.7 (± 13.3)
169Eu T1/2 23.7 — 2.6 (± 1.4) 0.5 (± 0.6) — — —
167Gd T1/2 80.1 — 0.6 (± 0.6) — — — —
168Gd T1/2 15.8 — 2.8 (± 1.5) — — — —
170Gd T1/2 13.9 — — 1.1 (± 0.9) 0.7 (± 0.8) — —
171Gd T1/2 37.0 — — — 6.9 (± 2.6) 0.5 (± 0.7) 1.8 (± 1.2)
172Gd T1/2 69.3 — — — 9.9 (± 3.2) 53.3 (± 7.6) 11.1 (± 3.3)
168Sm P1n (100) 2.0 (± 1.5) 3.5 (± 1.7) 0.5 (± 0.6) — — —
169Eu P1n 39.8 1.0 (± 0.9) 10.8 (± 2.9) 0.5 (± 0.7) — — —
170Eu P1n (100) — 6.7 (± 2.3) 2.1 (± 1.2) — — —
172Gd P1n (100) — — — 25.2 (± 4.6) 2.6 (± 1.7) 5.5 (± 2.1)

S(1)(T1/2) total: 97.0 (± 14.1) 78.9 (± 7.4) 97.4 (± 8.3) 74.6 (± 8.2) 98.6 (± 10.5) 93.8 (± 13.7)

S(1)(P1n) total: 3.0 (± 1.8) 21.5 (± 4.1) 3.7 (± 1.6) 25.9 (± 4.7) 2.8 (± 1.7) 5.6 (± 2.1)

S(1) total: 100.0 (± 14.3) 100.5 (± 8.5) 101.1 (± 8.4) 100.5 (± 9.5) 101.3 (± 10.7) 99.4 (± 13.9)

Figure 9. (Color online) Calculated relative r-process abundance pattern for the neutron star merger scenario (blue line). The
green and red boxes are the derived relative solar r-process abundance pattern from (Goriely 1999; Sneden et al. 2008). The
band in light blue color represents the ±2� interval propagated from the uncertainties of the original experimental results. The
band in dark blue color represents the ±2� interval when the relative uncertainty of the half-life of 168Sm is artificially reduced
to 20 %, with the same mean value. All the abundance patterns are scaled to match the mean of the calculated abundances at
A = 157 for the neutron star merger scenario.

(Case 2), for the neutron star merger scenario. The red dashed lines in the upper and middle panels represent the397

relative abundance of neutrons as a function of time.398

Contribution of experimental uncertainty to the abundance uncertainty [%]

NS merger

Hot wind
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Table 2. Table of nuclear input variables that have a significant contribution to the uncertainties of the calculated abundances
for A = 168-173 in the neutron star merger scenario. Columns 4–9 show the first-order sensitivity indices (S(1)), which
represent the contribution of individual variables to the abundance uncertainty, with 95 % confidence intervals. The maximum
relative uncertainty (third column) is the ratio of the size of the larger one of upper or lower experimental uncertainty to
the nominal value, in percentage. (100) indicates that the P1n value only has an upper limit and the size of its relative
uncertainty is 100%, according to the convention in Dimitriou et al. (2021). Long dashes (—) indicate that the nominal value
of 100 ⇥ S(1) is smaller than 0.5 [%]. Values larger than 10 [%] are highlighted in boldface. Complete tables are given in
Appendix B.

Max. relative 100⇥S(1) (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 1.9 (± 1.1) 3.2 (± 1.5) 4.9 (± 1.9) 2.7 (± 1.5) 0.8 (± 0.9) —
166Pm T1/2 57.5 — — 0.5 (± 0.6) 0.7 (± 0.7) — —
166Sm T1/2 15.9 — 1.7 (± 1.2) 4.8 (± 1.9) 3.8 (± 1.7) 1.5 (± 1.0) 0.8 (± 0.7)
167Sm T1/2 24.9 0.6 (± 0.6) — — 1.1 (± 0.9) 0.9 (± 0.8) 0.6 (± 0.7)
168Sm T1/2 59.5 60.9 (± 6.6) 55.1 (± 7.1) 14.6 (± 4.4) 32.6 (± 5.0) 43.5 (± 5.5) 41.6 (± 5.6)
168Eu T1/2 10.9 0.5 (± 0.7) — — — — —
169Eu T1/2 23.7 — 3.6 (± 1.4) — — 0.9 (± 0.8) 0.7 (± 0.7)
170Eu T1/2 37.6 — — 0.6 (± 0.9) — — —
167Gd T1/2 80.1 6.1 (± 2.5) 26.6 (± 4.3) 34.2 (± 6.2) 14.6 (± 3.9) 3.5 (± 1.8) 1.2 (± 1.1)
168Gd T1/2 15.8 24.3 (± 4.6) 8.3 (± 2.7) 8.1 (± 2.8) 2.2 (± 1.5) — —
169Gd T1/2 11.0 — 0.8 (± 0.8) — — — —
170Gd T1/2 13.9 — — 25.2 (± 4.7) 1.4 (± 1.2) 2.6 (± 1.4) 3.5 (± 1.7)
171Gd T1/2 37.0 — — — 20.5 (± 4.1) 4.6 (± 2.0) 1.0 (± 1.1)
172Gd T1/2 69.3 — — — 3.6 (± 2.1) 35.7 (± 5.1) 49.3 (± 5.9)
165Pm P1n 47.0 — 0.6 (± 0.6) 0.7 (± 0.5) — — —
168Sm P1n (100) — — — 0.8 (± 0.8) 0.6 (± 0.6) —
169Eu P1n 39.8 5.4 (± 2.1) — 3.7 (± 1.6) 3.6 (± 1.7) 1.3 (± 1.0) 0.6 (± 0.7)
170Eu P1n (100) — 0.5 (± 0.6) — — — —
172Gd P1n (100) — — — 5.5 (± 2.0) 3.2 (± 1.5) 0.6 (± 0.7)

S(1)(T1/2) total: 94.9 (± 8.6) 100.1 (± 9.2) 93.9 (± 9.9) 84.0 (± 8.5) 95.1 (± 8.3) 99.7 (± 8.6)

S(1)(P1n) total: 5.9 (± 2.3) 1.1 (± 1.1) 5.6 (± 2.0) 11.0 (± 2.9) 5.7 (± 2.0) 2.0 (± 1.1)

S(1) total: 100.9 (± 8.9) 101.3 (± 9.2) 99.5 (± 10.1) 95.0 (± 9.0) 100.7 (± 8.6) 101.6 (± 8.6)

more fragmented across the input variables compared to the case shown in Table 2, elevating the relative sensitivity382

of the half-lives of the gadolinium isotopes.383

Therefore, the half-lives of gadolinium isotopes may be considered significant sources of uncertainty of the calculated384

abundances in addition to the 168Sm half-life, within the set of isotopes of interest in the current study.385

4.2.3. Impact of 168Sm half-life during the freeze-out386

By inspecting the samples generated for the variance-based sensitivity analysis, one may learn how the abundances387

depend on the nuclear physics inputs. We again take the half-life of 168Sm as an example to demonstrate this, focusing388

on the neutron star merger scenario. Figure 10 shows the correlations of abundances for several mass numbers with389

the half-life of 168Sm. Comparing the panels (a) and (b) of the figure, it can be seen that the abundance has a clear390

correlation with the half-life when the sensitivity index is large.391

The mechanism of this correlation becomes clear by analyzing the abundance flows due to �-decay and neutron392

capture. Figure 11 shows the relative isotopic abundances as functions of time (upper panels), the abundance flows393

(middle panels) and their total contributions, i.e. integrals of the abundance flows over time (lower panels) due to394

neutron capture and �-decay (labeled as (n, �) and �� in the figure, respectively) for 168Sm, 168Eu, and 168Gd. They395

are separated into two cases: the sampled half-life of 168Sm is larger than 0.55 [s] (Case 1) or smaller than 0.20 [s]396
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Rapid neutron capture process (r-process)
• Responsible for ~50% of heavy elements


• High neutron density ( 1026 cm-3)

• Temperature can reach a few GK

➡ Compact binary mergers

➡ Some types of core-collapse SNe


• Interplay of nuclear physics processes

- Neutron capture & photodissociation


- -decay & -delayed neutron emission

- Fission

- etc…

>

β β

Horizons: Nuclear Astrophysics in the 2020s and Beyond 16

rp-process

p-process

r-process

Neutron star crust
process

s-process

np-process

Stellar fusion

i-process

Supernova EC process

Figure 2: Chart of nuclei: The various astrophysical processes are displayed schematically
on the nuclear chart. Stellar fusion dominates nucleosynthesis of lighter elements up to
the region of Fe. Heavier elements are formed predominantly by neutron-capture reactions
via the s-processes, possibly a continuum of i-processes, and multiple r-processes including at
least a weak and a strong r-process. A group of proton-rich isotopes, the p nuclei, are believed
to be formed in the so-called p process, also known as � process, with possible contributions
from the ⌫p process. The rp-process and neutron star crust processes are not considered
major contributors to the origin of the elements but play a role in interpreting observations
of accreting neutron stars (Section 4.1).

provide the necessary nuclear inputs for astrophysical models such as nuclear masses,

decay properties, and reaction cross sections (see overview in [208]).

Most impressively, the extremely neutron-rich nuclei in the r-process are now

coming within reach (Fig. 2). Building on early work at ISOL type radioactive

beam facilities that reached r-process nuclei for the first time (e.g., [234]), pioneering

work at NSCL [235] and GSI [236] used fast radioactive isotope beams produced by

fragmentation to cover significant parts of the r-process. A recent milestone was the

BRIKEN campaign at RIKEN/RIBF that measured hundreds of neutron decay branches

following � decay between 75Co and 172Gd that are required for r-process models [237].

New techniques for the study of such �-delayed neutron emission [e.g., 238] build on

these successes. Atomic physics-based approaches to measure atomic masses with ion

traps, complemented by time-of-flight techniques using spectrometers and storage rings,

have pushed precision measurements of nuclear masses well into the path of the r-process

[239, 240, 241]. Novel “reverse engineering” techniques, coupled with state-of-the-art

mass measurements [242], are helping to bolster our understanding of the r-process

From Schatz et al. (2022), arXiv:2205.07996 
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Analysis of propagated uncertainty 
• Is it possible to quantify the contribution of   

each  and  (input) uncertainty  
to the abundance (output) uncertainty?

➡ Variance-based sensitivity analysis  


• Decompose variance  

 

and compute Monte Carlo estimate of first-order sensitivity:  

T1/2 P1n

V(Y)

V(Y) = ∑
i

V(1)
i + ∑

i
∑
j>i

V(2)
ij + ⋯ + V(k)

12…k,

S(1)
i =

V(1)
i

V(Y)

V(Y)

Variance (propagated uncertainty) from each uncertain input
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10

BRIKEN project background: BELEN detector (2009-2014) – BRIKEN 2016-2021

30 3He counters 
in 2 rings. GSI-

FRS (2011).
ε!" ≈ 38%

48 3He counters in 
3 rings. IGISOL 

Jyväskylä (2014).
ε!" ≈ 40% (HPGe)

ε!" ≈ 60%

140 3He counters in 
7 rings.

BRIKEN (2016…)
ε!" ≈ 68.6% (HPGe)

20 3He counters 
in 2 rings. IGISOL 
Jyväskylä (2010).

ε!" ≈ 47%

All efficiencies are up to 1MeV, beam hole and counter location dependant.
Ion beam

nn

Polyethylene
moderator

Proportional 
3He counterSilicon β

decay detector

#+, + . → #+ + 0 + 7641,2

Slide courtesy of R. Caballero-Folch
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APPENDIX597

A. INTRODUCTION TO VARIANCE-BASED SENSITIVITY ANALYSIS METHOD598

The variance-based sensitivity method applied in this work is based on the work presented in (Saltelli et al. 2010),599

and the notation in this section follows that of the paper. Interested readers are referred to (Saltelli et al. 2010; Mara600

et al. 2015) for more detailed discussions of the method. As explained in the main text of the current work, this method601

quantifies the contribution of the uncertainty (variance) of each input variable to the uncertainty of the output. In602

our work, the input variables correspond to the experimental �-decay half-lives (T1/2) and the one neutron emission603

probabilities (P1n) and the output corresponds to the nuclear abundances as a function of mass numbers. A more604

detailed introduction to the variance-based sensitivity analysis method is provided below.605

Suppose that a numerical model can be expressed as Y = f(X1, X2, . . . , Xk), where Y is the output (e.g. nuclear606

abundance for a given mass number), Xi (i = 1, 2, . . . , k) are the input variables (e.g. T1/2 and P1n values), and f(·) is607

the simulation (e.g. nucleosynthesis post-processing code). Assuming for now that X1, X2, . . . , Xk are independently608

and uniformly distributed in [0, 1], the following decomposition of the overall output variance V (Y ) is proven unique609

by (Sobol’ 1993):610

V (Y ) =
X

i

V (1)
i +

X

i

X

j>i

V (2)
ij + · · ·+ V (k)

12...k, (A1)611

where Vi is the output variance due to the variance of input variable Xi, and the definition is similar for Vij and other612

higher order terms. Dividing both sides by V (Y ),613

1 =
X

i

S(1)
i +

X

i

X

j>i

S(2)
ij + · · ·+ S(k)

12...k, (A2)614

where S(1)
i = V (1)

i /V (Y ) is called a first-order sensitivity index for Xi, S
(2)
ij = V (2)

ij /V (Y ) is a second-order sensitivity615

index, and so on. These partial variances V (1)
i , V (2)

ij and so on can be written as (see (Sobol’ 1993; Saltelli et al. 2010)616

for more details)617

V (1)
i = VXi (EX⇠i(Y | Xi)) , (A3)618

V (2)
ij = VXiXj

�
EX⇠ij (Y | Xi, Xj)

�
� VXi (EX⇠i(Y | Xi))� VXj

�
EX⇠j (Y | Xj)

�
, (A4)619

620

and so on. In Eq. A3, EX⇠i(Y | Xi) denotes the expectation value (average) of Y when the value of Xi is fixed, and621

EX⇠i means that the average is taken over all the possible values of all the variables except for Xi. The outer VXi622

denotes that variance of the expected value is computed over all the possible values of Xi. More intuitively, this is623

equivalent to calculating the average of the samples shown in Fig. 10 by slicing the samples at a given value of the624

half-life, then estimating how much the average varies as the samples are sliced at all the possible values of the half-life.625

Therefore, the sensitivity indices can be written as626

S(1)
i =

VXi (EX⇠i(Y | Xi))

V (Y )
, (A5)627

S(2)
ij =

VXiXj

�
EX⇠ij (Y | Xi, Xj)

�
� VXi (EX⇠i(Y | Xi))� VXj

�
EX⇠j (Y | Xj)

�

V (Y )
(A6)628

= S(2),closed
ij � S(1)

i � S(1)
j ,629

630

and so on, where S(2),closed
ij :=

VXiXj (EX⇠ij (Y |Xi,Xj))
V (Y ) .631

While we have assumed so far that the input variables are uniformly distributed in [0, 1], this method can be used632

with general distributions such as a normal distribution or uniform distributions that are not in [0, 1], since random633

numbers uniformly distributed in [0, 1] can be transformed to desired distributions through inverse transform sampling,634

as long as they are independently distributed and their cumulative distribution functions are known. The sensitivity635

indices can then be defined in a similar manner for general distributions (Mara et al. 2015).636
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APPENDIX597

A. INTRODUCTION TO VARIANCE-BASED SENSITIVITY ANALYSIS METHOD598

The variance-based sensitivity method applied in this work is based on the work presented in (Saltelli et al. 2010),599

and the notation in this section follows that of the paper. Interested readers are referred to (Saltelli et al. 2010; Mara600

et al. 2015) for more detailed discussions of the method. As explained in the main text of the current work, this method601

quantifies the contribution of the uncertainty (variance) of each input variable to the uncertainty of the output. In602

our work, the input variables correspond to the experimental �-decay half-lives (T1/2) and the one neutron emission603

probabilities (P1n) and the output corresponds to the nuclear abundances as a function of mass numbers. A more604

detailed introduction to the variance-based sensitivity analysis method is provided below.605

Suppose that a numerical model can be expressed as Y = f(X1, X2, . . . , Xk), where Y is the output (e.g. nuclear606

abundance for a given mass number), Xi (i = 1, 2, . . . , k) are the input variables (e.g. T1/2 and P1n values), and f(·) is607

the simulation (e.g. nucleosynthesis post-processing code). Assuming for now that X1, X2, . . . , Xk are independently608

and uniformly distributed in [0, 1], the following decomposition of the overall output variance V (Y ) is proven unique609

by (Sobol’ 1993):610

V (Y ) =
X

i

V (1)
i +

X

i

X

j>i

V (2)
ij + · · ·+ V (k)

12...k, (A1)611

where Vi is the output variance due to the variance of input variable Xi, and the definition is similar for Vij and other612

higher order terms. Dividing both sides by V (Y ),613

1 =
X

i

S(1)
i +

X

i

X

j>i

S(2)
ij + · · ·+ S(k)

12...k, (A2)614

where S(1)
i = V (1)

i /V (Y ) is called a first-order sensitivity index for Xi, S
(2)
ij = V (2)

ij /V (Y ) is a second-order sensitivity615

index, and so on. These partial variances V (1)
i , V (2)

ij and so on can be written as (see (Sobol’ 1993; Saltelli et al. 2010)616

for more details)617

V (1)
i = VXi (EX⇠i(Y | Xi)) , (A3)618

V (2)
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�
� VXi (EX⇠i(Y | Xi))� VXj

�
EX⇠j (Y | Xj)

�
, (A4)619
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and so on. In Eq. A3, EX⇠i(Y | Xi) denotes the expectation value (average) of Y when the value of Xi is fixed, and621

EX⇠i means that the average is taken over all the possible values of all the variables except for Xi. The outer VXi622

denotes that variance of the expected value is computed over all the possible values of Xi. More intuitively, this is623

equivalent to calculating the average of the samples shown in Fig. 10 by slicing the samples at a given value of the624

half-life, then estimating how much the average varies as the samples are sliced at all the possible values of the half-life.625

Therefore, the sensitivity indices can be written as626

S(1)
i =

VXi (EX⇠i(Y | Xi))

V (Y )
, (A5)627

S(2)
ij =

VXiXj
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EX⇠ij (Y | Xi, Xj)

�
� VXi (EX⇠i(Y | Xi))� VXj

�
EX⇠j (Y | Xj)

�
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(A6)628

= S(2),closed
ij � S(1)

i � S(1)
j ,629

630

and so on, where S(2),closed
ij :=

VXiXj (EX⇠ij (Y |Xi,Xj))
V (Y ) .631

While we have assumed so far that the input variables are uniformly distributed in [0, 1], this method can be used632

with general distributions such as a normal distribution or uniform distributions that are not in [0, 1], since random633

numbers uniformly distributed in [0, 1] can be transformed to desired distributions through inverse transform sampling,634

as long as they are independently distributed and their cumulative distribution functions are known. The sensitivity635

indices can then be defined in a similar manner for general distributions (Mara et al. 2015).636

Where S(1)
i =

Vi

V(Y)

Variance decomposition and  
Sensitivity indices

Monte Carlo estimator: 
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A.1. Monte Carlo estimate of sensitivity indices637

In practice, the sensitivity indices (e.g. Eqs. A5 and A6) cannot be computed analytically. Therefore, we compute638

their Monte Carlo estimates instead. In order to illustrate the Monte Carlo method, we use first order sensitivity index639

(Eq. A5) as an example.640

Suppose that we have k variables of interest and wish to use N samples to compute their Monte Carlo sensitivity641

estimates. The first step is to generate samples that are uniformly distributed in [0, 1]. While random numbers can642

be used for this purpose, we employ a Sobol quasi-random sequence implemented in a Python library called SALib643

(Herman & Usher 2017). Sobol quasi-random sequences are designed to generate multi-dimensional uniform samples644

in [0, 1] to e�ciently explore the entire variable space by filling the gap between previously sampled points (Saltelli645

et al. 2010). Using the quasi-random sequence, we generate N ⇥ 2k samples and split them into two matrices of size646

N ⇥ k.647

The next step is to transform the uniformly distributed samples for each variable in the two matrices to desired distri-648

butions. In this study, the half-lives are assumed to follow truncated normal (Gaussian) distributions with their means649

and standard deviations defined by the experimental values and uncertainties. The beta-delayed one-neutron emission650

probabilities (P1n values) are either truncated normal distributions or uniform distributions in [0, (upper limit of P1n)].651

The samples uniformly distributed in [0, 1] can be transformed into these distributions through inverse transform sam-652

pling. For convenience, we call the first of the two transformed N ⇥ k matrices A and the second matrix B. Using653

these matrices, the first order sensitivity index is estimated by (based on Eq. 16 of (Saltelli et al. 2010) and Eq. 30 of654

(Mara et al. 2015))655

Ŝi
(1)

=

1
N

PN
j=1 f(A)j

⇣
f(B[i]

A )j � f(B)j
⌘

V̂ (Y )
, (A7)656

where Ŝi
(1)

denotes a Monte Carlo estimate of S(1)
i , and f(A)j as well as f(B)j are the output of simulation run657

with the j-th row (j = 1, 2, . . . , N) of the matrices A and B, respectively. B[i]
A is a N ⇥ k matrix whose i-th658

column (i = 1, 2, . . . , k) comes from the matrix A but all the other columns come from the matrix B. Consequently,659

f(B[i]
A )j is the output of the simulation run with the j-th row of B[i]

A . V̂ (Y ) is the total variance of the output of660

the simulation, computed with all the generated samples. Errors of the computed sensitivity indices can be estimated661

using bootstrapping (Archer et al. 1997).662

B. COMPLETE TABLES OF FIRST-ORDER SENSITIVITY INDICES663

Table B1. Table of first-order sensitivity indices S(1) for abundances with mass numbers A = 161–166, for the neutron

star merger scenario. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of

upper or lower experimental uncertainty to the nominal value, in percentage. (100) indicates that the P1n value only

has an upper limit and the size of its relative uncertainty is 100%, according to the convention in Dimitriou et al. (2021).

Dashes (—) indicate that the nominal value of 100⇥ S(1) is equal to or smaller than 0.0.

Max. rel. 100⇥S(1) [%] (95% C.I.)

Nuclide Variable unc. [%] A = 161 162 163 164 165 166

159Pm T1/2 2.6 0.2 (± 0.4) — — — — —
160Pm T1/2 1.8 0.6 (± 0.8) 0.1 (± 0.3) — — — —
161Pm T1/2 2.8 2.5 (± 1.4) 0.2 (± 0.4) — — — —
162Pm T1/2 8.1 — 21.4 (± 3.9) 1.2 (± 1.0) 2.1 (± 1.2) 0.3 (± 0.5) —
163Pm T1/2 11.6 — — 27.9 (± 4.7) — 0.4 (± 0.5) 0.5 (± 0.5)
164Pm T1/2 13.6 — — — 4.0 (± 1.9) — 0.4 (± 0.6)
165Pm T1/2 37.4 0.1 (± 0.3) — — 0.7 (± 0.7) 73.3 (± 7.6) 17.3 (± 4.2)
166Pm T1/2 57.5 — — — — 0.7 (± 0.7) 2.5 (± 1.5)

Table B1 continued on next page


