Nuclear Physics in Astrophysics - X

Contribution ID: 48

Type: Oral

Understanding 22Na cosmic abundance

Thursday, 8 September 2022 09:30 (15 minutes)

Simulations of explosive nucleosynthesis in novae predict the production of the radioisotope 22 Na. Its half-life of 2.6 yr makes it a very interesting astronomical observable by allowing space and time correlations with the astrophysical object. This radioisotope should bring constraints on nova models. It may also help to explain abnormal 22 Ne abundance observed in presolar grains and in cosmic rays. Its gamma-ray line at 1.275 MeV has not been observed yet by the gamma-ray space observatories. Accurate yields of 22 Na are required. At peak nova temperatures, the main destruction reaction 22 Na(p, γ) 23 Mg has been found dominated by a resonance at ER=0.204 MeV corresponding to the Ex=7.785 MeV excited state in 23 Mg. However, the measured strengths of this resonance disagree by more than a factor 3, see Ref. [1, 2].

An experiment was performed at GANIL facility to measure both the lifetime and the proton branching ratio of the key state at Ex=7.785 MeV. The principle of the experiment is based on the one used in [3]. With a beam energy of 4.6 MeV/u, the reaction ${}^{3}\text{He}({}^{24}\text{Mg}, \alpha){}^{23}\text{Mg}^{*}$ populated the state of interest. This reaction was measured with particle detectors (spectrometer VAMOS++, silicon detector SPIDER) and gamma tracking spectrometer AGATA. The expected time resolution with AGATA high space and energy resolutions is 1 fs. Several Doppler based methods were used to analyse the lineshape of γ -ray peaks.

Our new results will be presented. Doppler shifted γ -ray spectra from ²³Mg states were improved by imposing coincidences with the excitation energies reconstructed with VAMOS. This ensured to suppress the feeding from higher states. Lifetimes in ²³Mg were measured with a new approach. Proton emitted from unbound states in ²³Mg were also identified. With an higher precision on the measured lifetime and proton branching ratio of the key state, a new value of the resonance strength $\omega\gamma$ was obtained, it is below the sensitivity limit of the direct measurement experiments. The ²²Na(p, γ)²³Mg thermonuclear rate has been so reevaluated with the statistical Monte Carlo approach. The amount of ²²Na ejected during novae will be discussed as a tool for better understanding the underlying novae properties. The detectability limit of ²²Na from novae and the observation frequency of such events will also be discussed with respect to the next generation of gamma-ray space telescopes.

References

[1] A.L. Sallaska et al., Phys. Rev. L 105, 152501 (2010).

- [2] F. Stegmuller et al., Nuc. Phys. A 601, 168-180 (1996).
- [3] O.S. Kirsebom et al., Phys. Rev. C 93, 1025802 (2016).

Primary authors: FOUGERES, Chloe (GANIL (FRANCE)); DE OLIVEIRA SANTOS, Francois

Presenter: FOUGERES, Chloe (GANIL (FRANCE))

Session Classification: Thursday - Session 1