Heavy Element Nucleosynthesis from the Birth of Black Holes

Brian Metzger

with **Daniel Siegel, Jennifer Barnes**, Aman Agarwal, Mathieu Renzo, & Ashley Villar Siegel, Barnes, BDM 2019; Siegel et al. (arxiv: 2111.03094); Barnes & BDM (arxiv: 2205.10421)

Origin of the Elements, circa 2008

Origin of the Elements, circa 2008

An Alchemist, (Jacob Toorenvliet, 1679)

inches

Iron 26 Protons, 30 Neutrons

Gold 79 Protons, 118 Neutrons

LIGO's First Neutron Star Merger

August 17, 2017 - GW170817

Frequency (Hz)

Hunt for an Electromagnetic Counterpart

SWOPE telescope (Las Campanas, Chile)

Dark Energy Camera (Cerro Tololo, Chile)

NASA's Fermi gamma-ray telescope

resulting in identification of the host galaxy NGC 4993 at 40 Mpc!

A rapidly fading flare of light was discovered, unlike that ever observed before.

Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics

General Relativistic Hydrodynamical Simulation

Courtesy: David Radice, Wolfgang Kastaun, Filippo Galeazzi

Merger Ejecta

"Dynamical" $M_{ej} \sim 10^{-3} - 10^{-2} M_{\odot}$ t_{exp} ~ milliseconds v_{ej} ~ 0.3 c **Disk** Winds $M_{ej} \sim 10^{-2} - 10^{-1} M_{\odot}$ t_{exp} ~ seconds v_{ei} ~ 0.1 c

Disk Wind Ejecta Dominates

Hyper-Accreting Black Holes: Fussy Eaters

Collapsar Timeline

Can Collapsar Winds R-Process?

Siegel, Barnes, BDM 19

However, see Miller+19, Just+22

Collapsar

not neutron rich (Y_e = 0.5)

neutron-rich? Y_e << 0.5

GRB Accretion Disks Self-Neutronize

$$e^{-} + p \blacktriangleright n + \nu$$
$$e^{+} + n \blacktriangleright p + \bar{\nu}$$

at high electron degeneracy, weak interactions favors neutron-rich composition (Y_e << 0.5)

Disk becomes $\dot{M} > \dot{M}_{ign} \approx 2 \times 10^{-3} M_{\odot} s^{-1} \left(\frac{\alpha}{0.02}\right)^{5/3} \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{4/3}$ independent neutron-rich: $\dot{M} > \dot{M}_{ign} \approx 2 \times 10^{-3} M_{\odot} s^{-1} \left(\frac{\alpha}{0.02}\right)^{5/3} \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{4/3}$ of initial Ye

Collapsars can dominate the galactic r-process

Collapsars can dominate the galactic r-process

BNS merger

Challenged to be retained in dwarf galaxies and occur in very early universe

collapsar

Observed to occur in lowmetallicity dwarf galaxies (building blocks of the Milky Way's halo)

E _{iet}	~10) ^{49.5} erg	~10 ⁵¹ erg			
M _{acc}	~ 0.	.1-0.2 M _☉	~ 1-3 M _☉			
M _r	~ 0.	.04 M _☉	∼ 0.3-1 M _☉			
Rate	R_{SGRB}	∼ 5 Gpc ⁻³ yr ⁻¹	R _{LGRB} ∼ 1 Gpc⁻³ yr⁻¹			
(Collapsar)		(M _r *R) _{merger}		1*0.6		
(BNS Merger)		(M _r *R) _{collapsar}	~	5*0.04	~ ა	

Long GRB Host Galaxies

(Fruchter, Levan+06)

R-Process Signatures in GRB Supernovae

Barnes & BDM (arXiv:2205.10421)

Search Strategy:

Ground-based NIR follow-up of GRB SNe on timescales of >~ 1-2 months

James Webb Space Telescope in the mid-IR to confirm

Black Holes in the Pair Instability Mass-Gap

- Hierarchical mergers in dense stellar environments? (e.g. Yang+19, McKernan+20, Tagawa+21)
- Gas accretion in AGN (e.g. Safarzadeh & Haiman 20)
- Stellar mergers? (e.g. DiCarlo+19, Renzo+20)

Super-Collapsar

~150 M_{\odot} He star

 $\dot{M}_{\rm fb}$

wind ejecta BH

disk

Super-Kilonova Discovery Prospects with IR/Optical Surveys

Nancy Grace Roman Space Observatory (launch 2027)

SuperKN Light Curve Models and Survey Detection Rates

Model	$M_{ m ej}$	$v_{ m ej}$	$M_{ m Ni}$	$M_{ m lrp}$	$X_{ m La}$	$R^{(a)}_{ m Rubin}$	$R_{ m Roman}^{(b)}$
	(M_{\odot})	(c)	(M_{\odot})	(M_{\odot})	(10^{-3})	$({ m yr}^{-1})$	$({ m yr}^{-1})$
a	8.6	0.1	0.019	0.83	1.4	0.01	0.02
b	31.0	0.1	0.012	8.28	17.0	0.03	0.4
С	35.6	0.1	0.087	23.2	4.0	0.1	2
d	50.0	0.1	0.53	9.59	0.53	0.1	4
e	60.0	0.1	0.0	5.6	0.17	0.2	0.01

Summary

- The kilonova ejecta from GW170817 likely originated from the BH accretion disk
 => feeding a BH at high rates can generate r-process outflows (up to ~30% of the
 accreted mass), consistent with the predictions of GRMHD simulations.
- Similar BH accretion flows operate following the core collapse of massive rapidly spinning stars ("collapsars") as evidenced by similarities between short and long GRBs.
- Despite the different initial composition of the accreted material, collapsar disks also generate r-process outflows (weak interactions drive the disk to a neutron-rich state).
- Simple estimates show that collapsars could contribute to the Galactic r-process budget similarly to mergers

(while providing more natural explanations for r-process in dwarf galaxies and early Galactic chemical enrichment).

- Heavy r-process production in collapsars is testable with late-time infrared observations of GRB supernovae (being collected now).
- Scaling from ~10 M_{\odot} to ~100 M_{\odot} stellar progenitor masses produces qualitatively similar accretion history and disk wind ejecta, just scaled up in mass.

Disk wind ejecta from "super collapsars" provides a novel way to fill the PI mass-gap "from above", consistent with GW190521.

• The birth of the most massive BHs are accompanied by "super-kilonovae", with luminosities similar to SNe but lasting months peaking in the infrared, detectable following energetic GRBs or with future surveys such as the Roman Space Telescope.

Gravitational Wave Emission

$$\begin{split} h_{+}(t) &= \frac{4G}{rc^4} \mu r_{\rm disk}^2 \Omega_{\rm K, disk}^2 \frac{1 + \cos^2 \iota}{2} \cos[\Phi(t)], \\ h_{\times}(t) &= \frac{4G}{rc^4} \mu r_{\rm disk}^2 \Omega_{\rm K, disk}^2 \cos \iota \sin[\Phi(t)], \end{split}$$

GW frequency decreases in time as disk grows in radius ("sad trombone")

Gravitationally Unstable Disk

