

ALMA MATER STUDIORUM Università di Bologna Neutron induced cross section measurements

Cristian Massimi

Department of Physics and Astronomy & INFN

n_TOF: neutron time-of-flight facility@ CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

NPA-X 2022, 4-9 September 2022, CERN

Credit: CERN

massimi@bo.infn.it

n_TOF: neutron time-of-flight facility@ CERN

C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV CERN/LHC/98 02(EET) 1998

H⁻ (hydrogen anions) p (protons) ions
RIBs (Radioactive Ion Beams) n (neutrons) p (antiprotons) e (electrons) μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

NPA-X 2022, 4-9 September 2022, CERN

Credit: CERN

massimi@bo.infn.it

t i m e

n_TOF @ CERN

The advantages of n_TOF are a direct consequence of the characteristics of the **PS proton beam**: high energy, high peak current, low duty cycle.

proton beam momentum	20 GeV/c
intensity (dedicated mode)	7 x 10 ¹² protons/pulse
repetition frequency	1 pulse/1.2s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	N ² & H ² O (borated)
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1	2 cm (FWHM)
(capture mode)	

NPA-X 2022, 4-9 September 2022, CERN

n_TOF @ CERN

3rd generation spallation target

pure Pb based

* N₂-gas cooled, water moderated

Several innovations have been introduced

massimi@bo.infn.it

ALMA MATER STUDIORUM Università di Bologna

NPA-X 2022, 4-9 September 2022, CERN

n_TOF: nuclear data for science (and technology)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

n_TOF: nuclear data for science (and technology) @ NPA - X

s process:

- first measurement of the ⁹⁴Nb neutron capture cross-section at the cern n_TOF facility, by J. Balibrea Correa.
 Tuesday 6, at 9:30
- MACS measurements for nuclear astrophysics at n_TOF/NEAR: Feasibility study and first results, by E. Stamati.
 Wednesday 7, at 14:40
- New detection systems for an enhanced sensitivity in key stellar (n, γ) measurements , by J. Lerendegui Marco.
 Thursday 8, at 11:00
- Measurement of the ¹⁴⁰Ce(n, γ) cross section at n_TOF and astrophysical implications, by S. Amaducci. Thursday 8, at 11:30
- **Poster** by S. Lanzi: *The impact of n_TOF data on s-process nucleosynthesis*

NPA-X 2022, 4-9 September 2022, CERN

stituto Nazionale di Fisica Nuclear

massimi@bo.infn.it

n_TOF: nuclear data for science (and technology) @ NPA - X

Solar system elemental abundances How chemical 10[°] 10² elements are 10¹ synthesized in 10 the Universe? C-N-O 10⁻¹ N X [%] 10-4 Poster by G. Gervino: fracti X17 search project with 10 the EAR2 neutron Number 10⁻⁵ N=50 beam 10-6 N=82 N=126 10 **BIG BANG Nucleosynthesis:** Li-Be-B \circ ⁷Be(n, α) and ⁷Be(n,p) cross section measurement for the Cosmological Lithium Problem. 10 0 20 40 100 60 80 Later in this presentation Atomic number Z

s process:

- first measurement of the ⁹⁴Nb neutron capture cross-section at the cern n_TOF facility, by J. Balibrea Correa.
 Tuesday 6, at 9:30
- MACS measurements for nuclear astrophysics at n_TOF/NEAR: Feasibility study and first results, by E. Stamati.
 Wednesday 7, at 14:40
- New detection systems for an enhanced sensitivity in key stellar (n, γ) measurements , by J. Lerendegui Marco.
 Thursday 8, at 11:00
- Measurement of the ¹⁴⁰Ce(n, γ) cross section at n_TOF and astrophysical implications, by S. Amaducci. Thursday 8, at 11:30
- **Poster** by S. Lanzi: The impact of n_TOF data on s-process nucleosynthesis

Stituto Nazionale di Fisica Nucleare

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

n_TOF: nuclear data for science (and technology) ... so far

Reducing the uncertainty in the stellar cross section (MACS) is not only a question of better nuclear data: higher accuracy in the reaction rates opens the possibility to investigate new astrophysical scenarios

[nuclear clocks, constrains on the BBN, AGB modelling, nucleosynthesis conditions in explosive scenarios, meteoritic grains, others]

courtesy of Alberto Mengoni

NPA-X 2022, 4-9 September 2022, CERN

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. **83**, 157 – Published 1 April 2011

U. Abbondanno, et al. (The n_TOF Collaboration), <u>Phys. Rev. Lett.</u> **94** (2004) 161103 C. Lederer, et al. (The n_TOF Collaboration), <u>Phys. Rev. Lett</u> **110** (2013) 022501 C. Guerrero, et al. (The n_TOF COllaboration), <u>Phys. Rev. Lett</u>. **125** (2020) 142701

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. **83**, 157 – Published 1 April 2011

Sample	Half-life (yr)	Q value (MeV)	Comment	
⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment	
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars	
⁸¹ Kr	2.29×10^{9}	EC, 0.322	Part of ⁷⁹ Se branching	European
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars	Council
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass	∧ Z
¹³⁴ Cs	2.0652	$\beta^{-}, 2.059$	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future	
¹³⁵ Cs	$2.3 imes 10^{6}$	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)	
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars	
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = \frac{147}{148}$	
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future	
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno	
			et al., 2004a; Wisshak et al., 2006c)	
¹⁵⁴ Eu	8.593	β^{-} , 1.978	Complex branching at $A = 154, 155$, sensitive to temperature and neutron	
155			density	
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler	
152 0 1	0.650	70.0044	(1995)	
¹⁵⁵ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$	What
160 Tb	0.198	β^{-} , 1.833	Weak temperature-sensitive branching, very challenging experiment	
Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only	
170 Tm	0.352	$\rho = 0.068$	activation measurement at $kT = 25$ keV by Jaag and Kappeler (1996b) Important branching, constraine neutron density in low mass ACP stors	
171 Tm	1.021	$B^- 0.908$	Important branching, constraints neutron density in low-mass AOB stars	
179 T a	1.921	p, 0.098	Crucial for s-process contribution to 180 Ta natura's rarest stable isotope	ALR STOR
185 W	0.206	$B^{-} 0.432$	Important branching sensitive to neutron density and s-process temperature in	
**	0.200	p , 0.452	low-mass AGB stars	
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System	ALMA MATER STUDIORUM

U. Abbondanno, et al. (The n_TOF Collaboration), <u>Phys. Rev. Lett.</u> **94** (2004) 161103 C. Lederer, et al. (The n_TOF Collaboration), <u>Phys. Rev. Lett</u> **110** (2013) 022501 C. Guerrero, et al. (The n_TOF COllaboration), <u>Phys. Rev. Lett.</u> **125** (2020) 142701

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. **83**, 157 – Published 1 April 2011

Sample	Half-life (yr)	Q value (MeV)	Comment		@ NPA - X·
⁶³ Ni	100.1	β^{-} , 0.066	TOF work in progress (Couture, 2009), sample with low enrichment		Nove detection over the second
⁷⁹ Se	$2.95 imes 10^{5}$	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars		New detection systems for an enhanced
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching	European	sensitivity in key stellar (n, γ)
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars	Council	measurements.
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass		hy L Lorondogui Marco
			AGB stars	↑	by J. Lerendegur Marco.
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to s-process temperature in		Thursday 8, at 11:00
125 -			low-mass AGB stars, measurement not feasible in near future	\ \ \	
¹³⁵ Cs	$2.3 \times 10^{\circ}$	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)		
147 Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass		
147.5	0.(004	0- 0.005	AGB stars	i I-	╼╾╼╼╌╱
147 Pm	2.6234	β , 0.225	Part of branching at $A = 14//148$		
151 c	5.368 d	<u>B</u> , 2.404	Not feasible in the near future		
¹³¹ Sm	90	β, 0.076	Existing TOF measurements, full set of MACS data available (Abbondanno		
15417-1	9 502	0- 1.079	et al., 2004a; Wissnak et al., 2006c)		
Eu	8.393	β, 1.978	Complex branching at $A = 154, 155$, sensitive to temperature and neutron		
155 En	1 753	B^{-} 0.246	density So far only activation measurement at $kT = 25$ keV by long and Käppeler		
Eu	4.755	β , 0.240	So far only activation measurement at $kT = 25$ keV by Jaag and Kappeler (1995)		
153 Gd	0.658	EC 0.244	(1993) Part of branching at $A = 154$ 155		M/hat
160 Th	0.198	B^{-} 1.833	Weak temperature-sensitive branching, very challenging experiment		vvnat <
¹⁶³ Ho	4570	EC 0.0026	Branching at $A = 163$ sensitive to mass density during s process so far only		
110	4570	LC, 0.0020	activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)		May+2
¹⁷⁰ Tm	0.352	β^{-} , 0.968	Important branching, constrains neutron density in low-mass AGB stars		Next:
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$		
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope		STEP STO
¹⁸⁵ W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and s-process temperature in		
			low-mass AGB stars		
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System		ALMA MATER STUDIORUM
				[UNIVERSITÀ DI BOLOGNA

NFN

stituto Nazionale di Fisica Nuclear

massimi@bo.infn.it

NPA-X 2022, 4-9 September 2022, CERN

INFŃ

Istituto Nazionale di Fisica Nuclear

massimi@bo.infn.it

Fission program not included in the list !!!

Cross sections measured in 2001 - 2022

Branching point isotopes:

¹⁵¹Sm, ⁶³Ni, ¹⁴⁷Pm, ¹⁷¹Tm, ²⁰³Tl, ⁷⁹Se

- Abundances in presolar grains: ^{91,92,**93**,94,96 Zr, ^{94,96} Mo}
- ✤ Magic Nuclei and end-point: ¹³⁹La, ¹⁴⁰Ce, ⁹⁰Zr, ⁸⁹Y, ⁸⁸Sr, ^{204,206,207,208}Pb, ²⁰⁹Bi
- Seeds isotopes:

^{54,56,57}Fe. ^{58,60,62}Ni, ⁵⁹Ni(n,α)

✤ Isotopes of special interest:

^{186,187,188}Os (cosmochronometer),¹⁹⁷Au (reference cross section), ^{24,25,26}Mg, ³³S(n,α), ¹⁴N(n,p), ³⁵Cl(n,p), ²⁶Al(n,p), ²⁶Al(n,α) (neutron poison), ¹⁵⁴Gd (s-only isotopes), ^{93,94}Nb, ⁶⁸Zn, ^{69,71}Ga, ^{70,72,73,74,76}Ge, ^{77,78,80}Se (weak component), ^{155,157,160}Gd, ⁷Li(n,p), ⁷Li(n,α) Big Bang Nucleosynthesis

• Neutron Sources ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O:

n+25Mg, n+16O

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

Fission program not included in the list !!!

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

by J. Balibrea Correa.

Tuesday 6, at 9:30

Examples of relevant and/or challenging measurements

- ¹⁹⁷Aυ(n,γ)
- * ⁷Be(n,p) & ⁷Be(n,α)
- ♣ ²⁶Al(n,p) & ²⁶Al(n,α)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

Examples of relevant and/or challenging measurements

200TI 196**T** 198**T** 195_{TI} 197_{TI} 199_{TI} 201_{TI} 202_{TI} ²⁰³TI 1.16 h 1.84 h 2.84 h 5.30 h 7.42 h 1.09 d 3.04 d 12.23 d 29.524 ¹⁹⁶Hg ¹⁹⁸Hg ¹⁹⁹Hg 200Hg ²⁰¹Hg ²⁰²Hg ¹⁹⁵Hg ¹⁹⁷Ha ¹⁹⁴Ha 443.96 a 10.53 h 0.15 2.67 d 9.97 16.87 23.1 13.18 29.86 ¹⁹³Au ¹⁹⁸Au ¹⁹⁴Au 195Au ¹⁹⁶Au ¹⁹⁷Au ¹⁹⁹Au ²⁰¹Au ²⁰⁰Au 17.65 h 1.58 d 6.17 d 100 2.70 d 3.14 d 48.40 m 26.00 m 186.11 d 196Pt ¹⁹²Pt 193_{Pt} ¹⁹⁴Pt ¹⁹⁵Pt 197_{Pt} ¹⁹⁸Pt 199_{Pt} 200_{Pt} 0.782 50.01 a 32.967 33.832 25.242 19.89 h 7.163 30.80 m 12.50 h 196Ir 198_{Ir} ¹⁹¹Ir ¹⁹²Ir ¹⁹³Tr ¹⁹⁴Ir 195_{Ir} 197_{Ir} ¹⁹⁹Ir 37.3 73.83 d 62.7 19.28 h 2.50 h 52.00 s 5.80 m 8.00 s 20.00 s ¹⁹²Os 195**Os** ¹⁹⁰Os ¹⁹¹Os ¹⁹³Os ¹⁹⁴Os 196**O**S ¹⁹⁷Os 26.36 15.40 d 40.93 1.25 d 6.00 a 9.00 m 34.90 m 2.80 m

* ¹⁹⁷Au(n,γ)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

¹⁹⁷Au(n,γ), a reference cross section

massimi@bo.infn.it

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

NPA-X 2022, 4–9 September 2022, CERN

massimi@bo.infn.it

NPA-X 2022, 4-9 September 2022, CERN

Examples of relevant and/or challenging measurements

* ⁷Be(n,p) & ⁷Be(n,α)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

NPA-X 2022, 4-9 September 2022, CERN

INFŃ

Istituto Nazionale di Fisica Nuclear

³He. Large **discrepancy** for ⁷Li, which is produced from electron capture decay of ⁷Be

massimi@bo.infn.it

Cosmological lithium problem and ⁷Be

Cosmological lithium problem and ⁷Be

The (n,α) reaction produces two α -particles emitted backto-back with several MeV energy (Q-value=19 MeV)

2 Sandwiches of silicon detector (140 μ m,3x3cm²) with ⁷Be sample in between directly inserted in the neutron beam

Coincidence technique: strong background rejection

⁷Be(n, α)

Silicon 1 Neutrons

NFN

Istituto Nazionale di Fisica Nuclear

NPA-X 2022, 4-9 September 2022, CERN

cross section [b]

10⁻¹

10⁻²

10⁻³

10⁻⁴ – 10⁻²

4

3

2

10⁰

10¹

10⁻¹

M. Barbagallo et al. (The n_TOF Collaboration), Phys. Rev. Lett. 117 152701 (2016)

10²

neutron energy [eV]

10³

10⁵

10⁶

104

evaluated (n.a) cross section

droplet deposition on a 0.6-µm-thick polyethylene foil

massimi@bo.infn.it

Cosmological lithium problem and ⁷Be

The (n,p) reaction cross section in very high

Q-value=1.6 MeV

Silicon counter telescope ΔE -E

A few ng of 100% **enriched** sample is needed.

massimi@bo.infn.it

ALMA MATER STUDIORUM Università di Bologna

NPA-X 2022, 4-9 September 2022, CERN

L. Damone et al. (The n_TOF Collaboration), Phys. Rev. Lett. 121 042701 (2018)

⁷Be(n,p)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

L. Damone et al. (The n_TOF Collaboration), Phys. Rev. Lett. 121 042701 (2018)

L. Damone et al. (The n_TOF Collaboration), Phys. Rev. Lett. 121 042701 (2018)

Examples of relevant and/or challenging measurements

★ ²⁶Al(n,p) & ²⁶Al(n,α)

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

The cosmic γ -ray emitter ²⁶Al

INTEGRAL Measured abundance 2.8(8) Solar Masses [R. Diehl, *Nature* **439**, 45(2006)]

C Illiadis et al., Ast. J. Supp. 193, 16 (2011) Sensitivity study of ²⁶Al abundance in Massive stars

Factor changes of final $^{26}\rm{AL}^g$ abundance resulting from reaction rate variations for convective shell C/Ne burning^a , assuming five species of $^{26}\rm{AL}$

Reaction ^b	Rate multiplied by							
	100	10	2	0.5	0.1	0.01	Source ^c	Uncertainty ^d
${}^{26}Al^{g}(n,p){}^{26}Mg$	0.017	0.16	0.63	1.3	1.9	2.0	present	
$^{25}Mg(p,\gamma)^{26}Al^{g}$	2.9	5.4	1.5	0.63	0.35	0.29	il10	5%
$^{25}Mg(p,\gamma)^{26}Al^m$	6.7	3.0			0.75	0.71	il10	6%
$^{26}\mathrm{Al}^{g}(\mathbf{n},\alpha)^{23}\mathrm{Na}$	0.12	0.54					present	
$^{26}\mathrm{Al}^m(\mathrm{n,p})^{26}\mathrm{Mg}$	0.58						present	

→ ²⁶Al(n,p) and ²⁶Al(n, α) reaction rates represent critical uncertainties for ²⁶Al material processed by explosive and convective burning in massive stars and ejected into the ISM by core collapse supernovae

C. Lederer-Woods *et al.* (The n_TOF Collaboration), <u>Phys. Rev. C</u> **104** L032803 (2021) C. Lederer-Woods *et al.* (The n_TOF Collaboration), <u>Phys. Rev. C</u> **104** L022803 (2021)

Acknowledgments

Thank you for your attention

Thanks to the organizers

Many thanks to the n_TOF Collaboration

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Dipartimento di Fisica e Astronomia

cristian.massimi@unibo.it

www.unibo.it

Backup (NEAR)

The NEAR Station

Detectors for (n, γ) reaction

Capture reactions are measured by detecting γ -rays emitted in the de-excitation process. **Two different systems**, to minimize different types of background

Detectors: (n,p) and (n, α) reactions

Gas and solid state detectors are used for detecting charged particles, depending on the energy region of interest and the Q-value of the reaction

Silicon detectors Silicon sandwich Diamond detector ΔE-E Telescopes

Micromegas chamber

• low-noice, high-gain, radiation-hard detector

nTOF

MSX09-3007 3 cm × 3 cm, **300 µm** thick > particle range

PPAC

s-process branching at ¹⁵¹Sm

- branching isotope in the Sm-Eu-Gd region: test for low-mass TP-AGB H-burning 10⁸ K, He-Shell flashes 2.5-2.8 x 10⁸ K
- branching ratio (capture/β-decay) provides information on the thermodynamical conditions of the sprocessing (if accurate capture rates are known!)

small samples 180 mg of ¹⁵¹Sm 184 GBq

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

- remaining uncertainty is the β -decay rate of ¹⁵¹Sm

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

s-process branching at ⁶³Ni

C Lederer et al. (The n TOF Collaboration), Phys. Rev. Lett. 110, 022501 (2013)

1156 mg (ILL), 12% ⁶³Ni (240 GBq)

first experimental data on ${}^{63}Ni(n,\gamma)$ at astrophysical relevant energies

MACS = 66.7 (18.7) mb, a factor 2 higher wrt previous estimations

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

ALMA MATER STUDIORUM Università di Bologna

C Lederer et al. (The n TOF Collaboration), Phys. Rev. Lett. 110, 022501 (2013)

Study of ${}^{26}Mg$ levels via n + ${}^{25}Mg$

$^{22}Ne(\alpha, n)^{25}Mg$

Element	Spin / parity		
²² Ne	0+		
⁴ He	0+		

Only **natural-parity states in ²⁶Mg** can participate in the ²²Ne(a ,n)²⁵Mg reaction

$$J^{\pi} = 0^+, 1^-, 2^+, 3^-, 4^+ \dots$$

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell} \qquad \pi = (-1)$$
$$\vec{J} = 0 + \vec{\ell}$$

n + ²⁵Mg

Element	Spin/parity
²⁵ Mg	5/2+
neutron	1/2+

s-wave $\rightarrow J^{\pi}= 2^+, 3^+$ p-wave $\rightarrow J^{\pi}= 1^-, 2^-, 3^-, 4^$ d-wave $\rightarrow J^{\pi}= 0^+, 1^+, 2^+, 3^+, 4^+, 5^+$

NPA-X 2022, 4-9 September 2022, CERN

massimi@bo.infn.it

C Massimi *et al.* (The n_TOF Collaboration), <u>Phys. Rev. C **85**</u>, 044615 (2012) C Massimi *et al.* (The n_TOF Collaboration), <u>Phys. Lett. B **768**, 1 (2017)</u>

E_n	E_x	E^{Lab}_{α}	J^{π}	Γγ	Γ_n
(keV)	(keV)	(keV)	(ħ)	(eV)	(eV)
→ 19.92(1)	11112	589	2+	1.37(6)	2095(5)
62.73(1)	11154		1+	4.4(5)	7(2)
→ 72.82(1)	11163	649	2+	2.8(2)	5310(50)
→ 79.23(1)	11169	656	$3^{-(a)}$	3.3(2)	1940(20)
81.11(1)	11171			5(1)	1 – 30
100.33(2)	11190		3+	1.3(2)	5230(30)
155.83(2)	11243		2-	4.7(5)	5950(50)
→ 187.95(2)	11274	779	2+	2.2(2)	410(10)
→ 194.01(2)	11280	786	$3^{-(a)}$	0.3(1)	1810(20)
199.84(2)	11285		2-	4.8(4)	1030(30)
203.88(4)	11289			0.9(3)	3 - 20
210.23(3)	11295		2-	6.6(6)	7370(60)
→ 243.98(2)	11328	843	$2^{+(b)}$	2.2(3)	171(6)
260.84(8)	11344			1.0(2)	300 - 3900
261.20(2)	11344		> 3	3.0(3)	6000 - 9000

- Indirect approach, resonances above *n*-threshold
- R-Matrix parametrization (E_R , Γ_{γ} , Γ_n J^{π})
- Deduced ²⁶Mg states with natural parity

• No experimental Γ_{α}

massimi@bo.infn.it

The C₆D₆ Total Energy Detectors (TED)

 $4 \times C_6 D_6$ scintillators 135°: in-beam γ-rays

TED: Based in two principles

- **Condition I** : Low efficiency detectors $\epsilon_{\gamma} << 1$ Detecting a cascade: $\epsilon_c = 1-P(1-\epsilon_{\gamma}) \approx \sum \epsilon_{\gamma}$
- **Condition II:** The efficiency is proportional to E_{y}

$$(\boldsymbol{\epsilon}_c)_w = \boldsymbol{k} \sum_{i=1}^{N} \mathbf{E}_{\mathbf{\gamma}i} = \boldsymbol{k} \boldsymbol{E}_c$$

massimi@bo.infn.it

