Development of a gas jet target **HELMHOLTZ ZENTRUM** system for the Felsenkeller **HELMHOLTZ ZENTRUM** underground accelerator

A. Yadav^{1,2}, K. Schmidt¹, D. Bemmerer^{1,2}, A. Irman¹, F. Donat¹, M. Görler¹, A. Hartmann¹, M. Sobiella¹

1. Motivation

 ³He gas target for comprehensive data coverage of the entire BBN range (cosmic lithium problem)

888888

0 3 6

5. Static gas target with calorimeter

- Based on LUNA gas target setup [2]
- Target pressure ~ 2.0 mbar
- Calorimeter for beam intensity measurement

- Wall jet gas target for angular distribution measurements
- ¹²C(α,γ)¹⁶O potential for Felsenkeller with ¹²C+ beam, extended windowless ⁴He gas target, γ-calorimeter, and 4π detector

2. Differential pumping stages

- Catcher collects the bulk of the jet
- The expansion chamber is attached to a pumping system to keep a constant pressure

3. Wall jet gas target

Based on JENSA gas jet target [1]

Density	10 ¹⁸ atoms/cm ²	Single resonance measurement
Thickness	0.1 mm	Reaction localization
Width	10 mm	Beam size 5 mm
Inlet pressure	~1 atm	To get a supersonic jet
Mass flow	1.4 l/s	Caused by nozzle geometry

4. Pressure profile of first jet tests

All 7 pumps are assembled and working

6. Laser interferometry

 Optical path length difference (interferogram) for target density measurement [3]

7. Work in progress

- The combined gas target has been built
- Characterization of jet density
- Nozzle development
- Recirculation of gas

8. References

[1] Schmidt et al., NIM A 911, 1–9 (2018)
[2] Ferraro et al., Eur. Phys. J. A (2018) 54: 44
[3] Couperus, Irman et al., NIM A 830, 504 (2016)

¹Institute of Radiation Physics, HZDR, Dresden, Germany ²Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany

M. Sc. Anup Yadav · a.yadav@hzdr.de · www.hzdr.de

