

Experimental work on Nuclear Astrophysics at JRC GELINA facility

S. Kopecky, C. Paradela, P. Schillebeeckx European Commission

Joint Research Centre, Geel (BE)

Nuclear Physics in Astrophysics – X

4-9 September 2022, CERN

Joint Research Centre

Headquarters in Brussels and research facilities located in 5 Member States:

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)

Nuclear facilities at JRC - Geel

GELINA (this presentation) neutron time-of-flight facility for high-resolution neutron measurements

MONNET tandem accelerator based fast neutron source

TARGET nuclear target preparation laboratories

RADMET laboratories for standardisation of radionuclide

activity

HADES low-level gamma-spectrometry laboratory

METRO nuclear reference material and measurement facility

Operated by JRC.G.2 Unit (SN3S) "Standards for Nuclear Safety, Security and Safeguards"

- Nuclear data
- Radionuclide measurements
- Nuclear safeguards metrology

Applications

- Nuclear data for energy technology
 - Safety of current systems
 - Development of innovative systems (e.g. MYRRHA)
 - Back-end: Spent Nuclear Fuel (Burn Up Credit, Decay heat, ...)
 - Intermediate storage
 - Transport of SNF
 - Reprocessing facilities
 - Final Disposal of SNF
- Nuclear physics
- Nuclear medicine: diagnostics and therapy
- Nucleosynthesis and nuclear astrophysics
- Detector development
- Materials research (NAA, PGAA, Neutron Resonance Analysis, ...)

GELINA: Geel Electron LINear Accelerator

Normal Operating Parameters

Average Current: 40 µAFrequency: 400 HzAverage Electron Energy: 100 MeVPulse Width: 2 nsMean Power: 4.0 kWNeutron Flux: 1 x 1013 1/s

GELINA: fast and moderated neutron beam

GELINA: Geel Electron LINear Accelerator

 Electron linac driven pulsed white neutron source (10 meV < En < 20 MeV)

- Neutron energy : **time of flight** (TOF)
- Multi-user facility: 12 flight paths (10 m 400 m)
- Measurement stations with **special equipment**:
 - Total cross section measurements
 - Partial cross section measurements

GELINA: Experimental set-ups

• Transmission

FP13-10 m, FP12-30 m, FP4-50 m

Capture

FP5-10 m, FP15-30m, FP14-60 m

Fission, (n,p), (n,α), ...
 FP2-10 m

- Elastic, in-elastic scattering FP1-30 m
- In-elastic scattering (n,n'γ)
 FP16-30 m, FP3-100 m

Past contribution to Nuclear Astrophysics

• Intensive JRC contribution between 1990 and 2010 on neutron capture (leaded by F. Corvi) and neutron-induced charge particle reactions (leaded by C. Wagemans).

Nuclear Astrophysics was part of the work programme at that time!

Conference	(n,γ)	(n,α), (n,p)
NIC-II (92)	¹³⁸ Ba	^{32,33} S, ¹⁴ N
NIC-III(94)	²⁰⁸ Pb	^{35,36} Cl, ⁴¹ Ca
NIC-IV(96)	¹³⁶ Ba	
NIC-V(98)	⁸⁴ Kr, ²⁰⁷ Pb, ²⁰⁹ Bi	³⁷ Ar
NIC-VI(00)	⁹⁹ Tc	³⁷ Ar, ³⁹ Ar
NIC-VIII&ND2004	^{80,82,83,84} Kr	²⁶ AI, ³⁶ CI
NIC-IX&ND2007	^{128,129,130,132} Xe	⁴¹ Ca

Past IRMM contribution to Nuclear Astrophysics

Au (n,γ) cross section studied in a systematic way:

- Different FP lengths and sample thicknesses
- Self-shielding and multiple interaction corrections

Massimi et al., Eur. Phys. J. A 50 (2014) 124

Recent contributions relevant for Nuclear Astrophysics

- Since 2013 contributions through Open Access projects, proposed by external users, in particular n_TOF collaboration
 - ⁹²Zr(n, γ) and (n,tot) in collaboration with INFN-Bari *Phys. Rev. C* 105, 025805 (2022)
 - ⁸⁹Y(n,γ) and (n,tot) proposed by INFN-Bari, *in preparation*
 - ^{154,155,157}Gd(n,tot) proposed by INFN-Bologna with n_TOF samples *Phys. Lett. B 804, 135405 (2020)*
 - ^{nat,142}Ce(n, γ) and (n,tot) in collaboration with ORNL (Nuclear Criticality Safety Program)
 - 94,95,96,nat Mo(n,tot) proposed by INFN-Bologna, accepted by NIMB
 - ${}^{26}Al(n,\alpha)$ with University of Edinburgh *Phys. Rev. C* 104, 032803 (2021)
 - ¹⁶**O(n**, α) proposed by HZDR, *submitted to Phys. Rev. C*

Experiments carried out with in-house detection setups or with detectors provided by external users.

GELINA – (n,γ) at 12.5 m, 30 m and 60 m

- Total energy detection principle
 - C₆D₆ liquid scintillators
 (Boron free quartz window!)
 - 125°
 - Pulse Height Weighting Technique

$$C_{w} = \int C_{c}(E_{d}) WF(E_{d}) dE_{d}$$
$$\varepsilon_{\gamma} \propto E_{\gamma} \implies \varepsilon_{c} \propto S_{n} + E_{n} \frac{A}{1+A}$$

- Fluence rate measurements (IC)
 - ¹⁰B(n,α)
 - ²³⁵U(n,f)

$$\mathbf{Y}_{exp} = \mathbf{N} \frac{\mathbf{C}_{w} - \mathbf{B}_{w}}{\mathbf{C}_{\phi} - \mathbf{B}_{\phi}} \mathbf{Y}_{\phi}$$

GELINA – (n,tot) at 10 m, 30 m and 50 m

- Transmission: direct relation between T_{exp} and σ_{tot}

Castle Sample changer Meutron target + moderators

- Incoming neutron flux cancels
- Detection efficiency cancels
- Li-glass scintillator ⁶Li(n,t) α

⁸⁹Y(n,tot) (n,γ) cross section measurement

□ n_TOF

- (n,γ) at 185 m
- 1 sample of 1 mm thickness (30 mm Ø)

GELINA

- (n, γ) at 60 m and 2 mm thick sample (80 mm \emptyset)
- (n,tot) at 50 m and 3 sample thicknesses: 1.28, 2 and 4.48 mm

GELINA + n_TOF: other examples

- ⁹²Zr + n
 - n_TOF : (n,γ) at 185 m
 - GELINA:
 ⁹²Zr(n,γ) at 30 m
 ⁹²Zr(n,tot) at 50 m
- ^{154,155,156,157,158,160}Gd + n
 - n_TOF : 154,155,157 Gd(n, γ) at 185 m
 - GELINA:

^{155,156,157,158,160}Gd(n,γ) at 30 m ^{154,155,157,nat}Gd(n,tot) at 10 and 50 m

Kye et al. Eur. Phys. J. A (2020)56:30 Mazzone et al. Phys. Lett. B 804 (2020) 1354

¹⁶O(n, α) cross section

- Impact for s-process: ¹³C(α,n)¹⁶O inverse reaction
- Large discrepancies among experiments and evaluations of ¹⁶O(n,α)

- ¹³C(α,n) thin target experiments show discrepancies
- Consistency of thick target experiments

¹⁶O(n, α) measurement at GELINA

• Proposed by HZDR

 ¹⁶O(n,alpha) reaction measured with a FGIC at 2 bar 95% Kr + 5% CO2

 Incoming neutron flux monitored by ²³⁵U(n,f) H19 chamber from PTB (10 ²³⁵U layers)

• FP16-60m during 2 weeks

¹⁶O(n, α) measurement at GELINA

- Reduced TOF resolution (27 ns)
- Discrimination only for (n, α_0)

- Absolute measurement
 - Careful determination of areal density
 - Validation by C(n,n) reactions

Comparison to converted data from
 ¹³C(α,n) ¹⁶O

¹⁶O(n,alpha) cross section measurement

The result agrees with Thick Target Yield (TTY) renormalization

	$^{16}O(n, \alpha_0)$	West and	Pigni	Ciani
	data	Sherwood	and	et al. [5]
	(this work)	TTY [3]	Croft [4]	
main	5%	8%	8%	8%
uncertainty	N_T^{16O}	¹³ C	¹³ C	detection
	(¹⁶ O target)	abundance	abundance	efficiency
Bair and Haas [6]	0.87	0.85	0.8	
Harissopulos [7]	1.30	1.27	1.15	1.37
Sekharan [8]	1.37	1.35		
IRSN [9]	1.02	1.00		
ENDF/B-VIII.0	0.92	0.89		
JEFF-3.3	1.26	1.25		

¹⁶O(n,alpha) cross section measurement

Implication for s-process stellar nucleosynthesis

o 800-1000 keV: agreement of Drotleff with Bair&Haas and Harissopoulus (renorm.)

o 300-800 keV: Drotleff, Heil, Davids

Summary

- GELINA: High-resolution TOF measurements for (n,γ) , (n,tot) and (n,α)
- Multi-user facility: 11 flight paths in use (10 m 400 m)
 - Adaptability in energy range
 - Beam time availability
- In-house detectors and acquisition system or/and equipment provided by external users
- Complementarity with other facilities like n_TOF
 - Combination of transmission and capture data for different isotopes
- Open to proposals on neutron cross sections relevant for astrophysics.
 - 2022 call deadline on 9th September
 - Proposal on Sr-88 cross sections from INFN

