Neutron-induced cross section measurements using the Liquid Lithium Target at SARAF

Moshe Friedman

The Hebrew University of Jerusalem

NPA-X

CERN 5/9/2022

Main stellar nucleosynthesis processes

7 Li $(p,n)^{7}$ Be as a neutron source

Q= -1.644 MeV

$$E_{th}(p)$$
= 1.881 MeV \rightarrow $E_n \approx 27 \text{ keV}$

$$\frac{dN}{dE_n} \propto E_n \exp(-E_n/kT)$$

- W. Ratynski and F. Käppeler, PRC 37, 595 (1988)
- For $E_p = 1912 \text{ keV} \rightarrow \text{quasi-Maxwellian energy flux distribution with } kT \approx 25 \text{ keV}$
- > Neutron emission: forward cone with ~ ±60° opening angle

$$MACS = \frac{2}{\sqrt{\pi}} \frac{1}{(kT)^2} \int \sigma(E) \cdot E \cdot \exp(-E/kT) \cdot dE$$

Soreq Applied Research Accelerator Facility (SARAF): Phase I

2 mA $\approx 10^{16}$ protons/sec

2 mA @ 2 MeV --> 4 kW beam power

Liquid Lithium Target (LiLiT)

Peak power areal density: ~2.5 kW/cm²

Peak power volume density: ~0.5 MW/cm³

- S. Halfon et al., RSI **84**, 12350 (2013)
- S. Halfon *et al.*, RSI **85**, 056105 (2014)

Experimental setup

Neutron spectrum and transport simulation

SimLiT

$\Delta E = 1.5 \text{ keV}$ $\Delta E = 20 \text{ keV}$ 10° 30 Feinberg et al. Feinberg et al. - SimLiT SimLiT 10 40 30° 30 dN/dE (arb. units) 50° 50° 10 60° 60° 30 20 10 40 60 80 100 120 0 20 40 60 80 100 120 140 neutron energy (keV)

SimLiT+GEANT4

- G. Feinberg et al., PRC 85, (2012)
- M. Friedman et al., NIM A 698, (2013)

Product measurement

8

Commissioning experiment – ^{94,96}Zr(n,γ)

Phase-I experiments

Reaction	Detection tech.	Hebrew U, SARAF and collaborations below		
$^{94,96}\mathrm{Zr}(n,\gamma)$	γ spect.	_		
$^{90}\mathrm{Zr}(\gamma,n)$	γ spect.	_		
$^{7}\mathrm{Be}(n,\alpha)$	$\overline{\mathrm{CR39}}$	UConn, PSI, ILL		
, , ,		WIS, CERN, TUNL		
²³ Na, ^{35,37} Cl(n, γ)	γ spect., AMS	ANU, Goethe U, Rossendorf		
$^{36,38}\mathrm{Ar}(n,\gamma)$	AMS, LLC	ANL, Goethe U, U Bern		
$^{53}\mathrm{Mn}(n,\gamma)$	γ spect.	PSI		
$^{69,71}{ m Ga}(n,\gamma)$	γ spect.	_		
74,78,80,82 Se (n,γ)	γ spect.	_		
78,80,84,86 Kr (n,γ)	γ spect., ATTA, LLC	ANL, Goethe U, U Bern		
$80,82,86 \text{Kr}(\gamma, n)$	γ spect., ATTA	ANL, Goethe U		
$^{92}\mathrm{Zr}(n,\gamma)$	AMS	ANL, ANU		
124,126,132,134 Xe (n,γ)	γ spect.	Goethe U		
$136,138,140,142$ Ce (n,γ)	γ spect.	_		
$^{147}\mathrm{Pm}(n,\gamma)$	γ spect.	U Seville, ILL, PSI		
$169,171$ Tm (n,γ)	γ spect.	U Seville, nTOF, ILL, PSI		
$^{208}\mathrm{Pb}(n,\gamma)$	β, γ spect.	U Seville		
$^{209}\mathrm{Bi}(n,\gamma)$	α, β, γ spect.	JRC, Geel		

Work led by Michael Paul (HUJI) and Moshe Tessler (SARAF)

SARAF Phase II

Table 1. SARAF-II beam top-level requirements.

Parameter	Value	Comment	
Ion species	protons/deuterons	$M/q \le 2$	
Energy range	5–40 MeV deuterons	variable	
	5–35 MeV protons	energy	
Current range	$0.045\mathrm{mA}$	CW (and	
		pulsed)	
Operation	6000 hours/year		
Maintenance	hands-on	low beam loss	

I. Mardor et al., EPJA **54** (2018)

SARAF Phase II – neutron TOF area

SARAF Phase II – neutron camera

SARAF Phase II – exotic nuclide facility

SARONA - The SARaf exotic Nuclide fAcility

SARAF Phase II — neutron induced cross-sections

Why (n,p) and (n, α)?

- Supernovae and other explosive scenarios are fast.
- Nucleosynthesis follows sequences of capture-decay processes.
- Waiting points: Long-lived (>minutes) nuclei tend to create bottlenecks. High impact on nucleosynthesis. High abundancies.
- For proton-rich nuclei, (n,p) and (n,α) enhance destruction of waiting-point nuclei.

Gamma emitting ashes

Energy (kev)

J. , .. R. Diebl. Rep., Prog. Phys. 76 (2013) **325300**12)

Data status

THE ASTROPHYSICAL JOURNAL, 653:474-489, 2006 December 10

© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SENSITIVITY OF p-PROCESS NUCLEOSYNTHESIS TO NUCLEAR REACTION RATES IN A 25 M_{\odot} SUPERNOVA MODEL

W. RAPP, J. GÖRRES, AND M. WIESCHER

Department of Physics and Joint Institute of Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556

H. Schatz

Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory and Joint Institute of Nuclear Astrophysics, Michigan State University, 1 Cyclotron Laboratory, East Lansing, MI 48824

AND

F. Käppeler

Forschungszentrum Karlsruhe, Institut für Kernphysik, P.O. Box 3640, 76021 Karlsruhe, Germany Received 2005 August 5; accepted 2006 August 14

TABLE 2 Selected (γ, p) or (n, p) Reactions

Reactions							
126 Ba $(\gamma, p)^{125}$ Cs*	92 Mo $(\gamma, p)^{91}$ Nb*	75 Se $(n, p)^{75}$ As*					
$^{110}{ m Sn}(\gamma,p)^{109}{ m In}^*$	86 Rb $(n, p)^{86}$ Kr*	$^{74}{\rm Se}(\gamma, p)^{73}{\rm As}^*$					
$^{106}\text{Cd}(\gamma, p)^{105}\text{Ag}$	85 Sr $(n, p)^{85}$ Rb*	76 As $(n, p)^{76}$ Ge*					
$^{104}\mathrm{Cd}(\gamma,p)^{103}\mathrm{Ag}$	$^{84}\mathrm{Sr}(\gamma,p)^{83}\mathrm{Rb}^*$	75 As $(\gamma, p)^{74}$ Ge*					
$^{100}\text{Pd}(\gamma, p)^{99}\text{Rh}$	$^{78}\mathrm{Kr}(\gamma,p)^{77}\mathrm{Br}^*$	73 As $(\gamma, p)^{72}$ Ge					
96 Ru (γ, p) 95 Tc*	77 Se $(n,p)^{77}$ As	71 Ge $(n,p)^{71}$ Ga					

Notes.—These are reactions that, together with their respective inverse reactions, were found to exhibit the strongest influence on the final *p*-abundances. Their impact is illustrated in Fig. 15*a*. Particularly important rates are marked with an asterisk (*).

-NO DATA FOUND-

Data status

THE ASTROPHYSICAL JOURNAL, 729:46 (18pp), 2011 March 1
© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/729/1/40

UNCERTAINTIES IN THE *vp*-PROCESS: SUPERNOVA DYNAMICS VERSUS NUCLEAR PHYSICS

SHINYA WANAJO^{1,2}, HANS-THOMAS JANKA², AND SHIGERU KUBONO³

Technische Universität München, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany; shinya.wanajo@universe-cluster.de
 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany; thj@mpa-garching.mpg.de
 Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; kubono@cns.s.u-tokyo.ac.jp
 Received 2010 April 14; accepted 2010 December 27; published 2011 February 8

ABSTRACT

We examine how the uncertainties involved in supernova dynamics, as well as in nuclear data inputs, affect the νp -process in the neutrino-driven winds. For the supernova dynamics, we find that the wind termination by the preceding dense ejecta shell, as well as the electron fraction $(Y_{e,3};$ at 3×10^9 K), plays a crucial role. A wind termination within the temperature range of $(1.5-3)\times 10^9$ K greatly enhances the efficiency of the νp -process. This implies that the early wind phase, when the innermost layer of the preceding supernova ejecta is still $\sim 200-1000$ km from the center, is most relevant to the νp -process. The outflows with $Y_{e,3}=0.52-0.60$ result in the production of the p-nuclei up to A=108 with interesting amounts. Furthermore, the p-nuclei up to A=152 can be produced if $Y_{e,3}=0.65$ is achieved. For the nuclear data inputs, we test the sensitivity to the rates relevant to the breakout from the p-p chain region (A<12), to the (n,p) rates on heavy nuclei, and to the nuclear masses along the νp -process pathway. We find that a small variation of the rates of triple- α and of the (n,p) reaction on 56 Ni leads to a substantial change in the p-nuclei production. We also find that 96 Pd (N=50) on the νp -process path plays a role as a second seed nucleus for the production of heavier p-nuclei. The uncertainty in the nuclear mass of 82 Zr can lead to a factor of two reduction in the abundance of the p-isotope 84 Sr.

-NO DATA FOUND-

Data status

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 19 © 2011. The American Astronomical Society. All rights reserved. Printed

THE EFFECTS OF THERMONU MAS

Christian Iliadis^{1,2}, A

proximate order of Tables 2, 4, and 6 so the five reactions, 26 Al(7 23Na(α , 7 26Mg, and future measurements which the rate needs Ne/C burning, ≈ 1.4

/ C **104**, L022803 (2021)

massive stars: Study of the key 26 Al(n, p) reaction

W C 104, L032803 (2021)

ı massive stars: Study of the key 26 Al (n, α) reaction

nd ²⁶Al(n,α) to ~150 keV

21). PRC 104 L022803

C. Leuciei et al. (2021). PRC 104 L032803

Motivation: (n,p) and (n,α) data scarce, especially for unstable proton-rich isotopes. (26 Al(n,p), 56 Ni(n,p) and more).

Goal: Establish an apparatus for (n,p) and (n,α) measurements on stable <u>and unstable</u> isotopes at explosive stellar temperatures (~1.5-3.5 GK, ~10-2000 keV).

Protons - SARAF

Neutrons - LiLiT

Targets - FRIB

Detection

2-5 MeV protons Beam current > 1 mA.

keV neutrons via ⁷Li(p,n) Operational

Isotope Harvesting project E. Abel *et al.* J. Phys. G 46 (2019)

Design stages efficiency ~0.5%

Neutrons for studies of explosive nucleosynthesis

neutron energy spectra for different proton energies $E_p = 1900-3600 \text{ keV}$

 56 Ni(n,p) (t_{1/2} = 6 d)

Sample size: 1 mCi (3x10¹³ atoms)

Detection rate: 1-150 counts/hour (TENDL2019)

Effect of differences in the neutron spectrum

	calculated cross section (mb)							
	T = 1.5 GK			T = 3.5 GK				
reaction	Maxwell.	reconst.	corr.	Maxwell.	reconst.	corr.		
$\overline{{}^{14}N(n,p)}$	9.10	9.08	1.00	27.1	27.9	0.97		
26 Al (n,p)	266	261	1.02	242	241	1.00		
26 Al (n,α)	61.2	60.6	1.01	73.3	72.9	1.01		
40 K (n, p)	8.21	9.17	0.90	11.47	11.89	0.96		
40 K (n, α)	22.63	26.49	0.85	25.34	27.59	0.92		

Summary

- LiLiT @ SARAF is a high-intensity neutron source for s-process measurements, with a neutron flux on the order of 10¹⁰ n/s on the sample.
- During the operation of SRARAF Phase-I, LiLiT produced many MACS values of relevance for the s-process, and is expected to continue conducting similar measurement in the future.
- SARAF Phase-II will provide new opportunities for nuclear nucleosynthesis studies.
- LiLiT will also be used to produce higher energy neutrons, which will allow direct (n,p) and (n,α) cross section at explosive stellar temperatures.

Thanks for listening!