Resonant Benchmarks hh, hS, SS for the LHC

Milada Margarete Mühlleitner (KIT)

Coll. with Philipp Basler, Christoph Englert and Sally Dawson, 1812.03542

HH Sub-Working Group Meeting 13 May 2019

The \mathcal{NMSSM} Higgs Sector

• Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal; Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ...

- SUSY Higgs Sector: at least 2 complex Higgs doublets, NMSSM: plus complex singlet field ~~
- Enlarged Higgs and neutralino sector: 2 complex Higgs doublets \hat{H}_u , \hat{H}_d , 1 complex singlet \hat{S}

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

• Significant changes of Higgs boson phenomenology

$\mathcal{T}he \; \mathcal{C}2HDM$

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

- CP Violation: m_{12}^2 , λ_5 can be complex (all others real); indep. phase \rightsquigarrow CP violation
- Particle content:
 - 3 neutral CP-mixing Higgs bosons H_1, H_2, H_3
 - 1 charged Higgs pair H^{\pm}
- Flavour-Changing Neutral Currents (FCNC) at tree-level: forbidden by \mathbb{Z}_2 symmetry

$$\Phi_1 \to \Phi_1 , \qquad \Phi_2 \to -\Phi_2 .$$

	Type I	Type II	Lepton-Specific	Flipped
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Leptons	Φ_2	Φ_1	Φ_1	Φ_2

$\mathcal{T}he \; \mathcal{C}2HDM$

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

- CP Violation: m_{12}^2 , λ_5 can be complex (all others real); indep. phase \rightsquigarrow CP violation
- Particle content:
 - 3 neutral CP-mixing Higgs bosons H_1, H_2, H_3
 - 1 charged Higgs pair H^{\pm}
- Flavour-Changing Neutral Currents (FCNC) at tree-level: forbidden by \mathbb{Z}_2 symmetry

$$\Phi_1 \to \Phi_1 , \qquad \Phi_2 \to -\Phi_2 .$$

	Type I	Type II	Lepton-Specific	Flipped
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Leptons	Φ_2	Φ_1	Φ_1	Φ_2

• Scan over parameter space:

with ScannerS. checks for: [Coimbra, Sampaio, Santos '13; Ferreira, Guedes, Sampaio, Santos '14]

• Theoretical constraints:

boundedness from below, tree-level perturbative unitarity, EW vacuum is global minimum of tree-level potential and also NLO [BSMPT, Basler, MMM '18]

• Experimental constraints::

- * S, T, U parameters for EW precision observables [Baak eal '14] * $R_b = \Gamma(Z \to b\bar{b})/\Gamma(Z \to \text{hadrons}) \text{ and } B \to X_s \gamma$
 - [Haber,Logan '99;Deschamps eal '09;
 - Mahmoudi, Stal '09; Steinhauser eal '17]
 - [Bechtle eal '08,'11,'13]
- * Higgs rates checked via SUSHI and C2HDM_HDECAY, HiggsSignals [Harlander eal; Fontes eal; Bechtle eal]
- * Electric dipole moment of the electron

* Higgs exclusion bounds by HiggsBounds

[The ACME Collaboration '18]

$\mathcal{C}\text{2HDM }\mathcal{S}\text{can }\mathcal{R}\text{anges}$

	t_{eta}	$\alpha_{1,2,3}$	${\sf Re}(m_{12}^2)$ [TeV ²]	$m_{H^{\pm}}$ [TeV]	$m_{H_i \neq h}$ [TeV]
min	0.8	$-\frac{\pi}{2}$	0	0.15/0.59	0.01
max	20	$\frac{\pi}{2}$	0.5	1.5	1.5

 $10 \text{ GeV} \leq m_{H_j} < 1.5 \text{ TeV}$

$$\alpha(M_Z) = 1/127.92, \quad \alpha_s^{MS}(M_Z) = 0.118,$$

 $M_Z = 91.187 \text{ GeV}, \quad M_W = 80.358 \text{ GeV},$

 $m_t = 172.5 \text{ GeV}, \quad m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}}) = 4.18 \text{ GeV},$

 $m_\tau = 1.777 \text{ GeV}.$

$\mathcal{N}MSSM \mathcal{S}can$

• Conditions on the parameter scan:

- * At least one CP-even Higgs boson $H_i \equiv h$ with:
- * Compatibility with μ_{XX}^{exp} (X = b, τ, γ, W, Z)
- \ast Compatibility with Higgs exclusion bounds
- \ast Compatibility with SUSY searches
- * Compatibility w/ DM constraints

 $124 \,\, {
m GeV} \,\, \lesssim M_h \, \lesssim 126 \,\, {
m GeV}$

[SusHi, NMSSMTools, NMSSMCALC, HiggsSignals]

[HiggsBounds]

[PLANCK, LUX, XENON1T, micrOmegas]

Constraints from low-energy observables, from LEP, Tevatron and LHC searches [NMSSMTools]

	t_{β}	λ	κ	M_1	M_2	M_3	A_t	A_b	A_{τ}	$m_{\tilde{Q}_3}$	$m_{\tilde{L}_3}$	A_{λ}	A_{κ}	$\mu_{\rm eff}$
									in Te	eV				
min	1	0	-0.7	0.1	0.2	1.3	-6	-6	-3	0.6	0.6	-2	-2	-5
max	50	0.7	0.7	1	2	7	6	6	3	4	4	2	2	5

$$m_{ ilde{t}_R}=m_{ ilde{Q}_3}\;,\quad m_{ ilde{ au}_R}=m_{ ilde{L}_3} \quad ext{ and } \ m_{ ilde{b}_R}=3 \; ext{TeV}$$

$$m_{\tilde{u}_R,\tilde{c}_R} = m_{\tilde{d}_R,\tilde{s}_R} = m_{\tilde{Q}_{1,2}} = m_{\tilde{L}_{1,2}} = m_{\tilde{e}_R,\tilde{\mu}_R} = 3 \text{ TeV}$$

 $\lambda^2 + \kappa^2 < 0.7^2$

(1) C2HDM Benchmark Point - $\mathcal{M}ax \ \sigma(hh \to (b\bar{b})(b\bar{b}))$

125.09	$3.64\cdot10^{-3}$
310.99	0.35
314.63	1.44
372.62	0.99
781	
261	42
266	
14860	
1.160	
$-6.066 \cdot 10^{-3}$	
1.2338	
5.088	
$3.\overline{680 \cdot 10^{-5}}$	
0.890	
0.110	
	$\begin{array}{c} 125.09\\ 310.99\\ 314.63\\ 372.62\\ \hline 781\\ 261\\ \hline 266\\ \hline 14860\\ \hline 1.160\\ -6.066 \cdot 10^{-3}\\ \hline 1.2338\\ \hline 5.088\\ \hline 3.680 \cdot 10^{-5}\\ \hline 0.890\\ \hline 0.110\\ \end{array}$

 $\label{eq:relation} \diamond \; R_{i3}^2 \; \text{quantifies} \\ \text{singlet admixture} \;$

$$\diamond \; \sigma^{\rm NLO} \sim 2 \sigma^{\rm LO}$$

◇ enhancement due to resonant H_2 , H_3 production w/ subsequent decay into hh: BR($H_2 \rightarrow hh = 0.428$), BR($H_3 \rightarrow hh = 0.707$)

(2) C2HDM Benchmark Point - $Max \sigma(SS/hS \rightarrow (b\bar{b})(b\bar{b}))$

$m_{H_1}/\Gamma_{ m tot}$ [GeV]	125.09	$3.74\cdot 10^{-3}$
$m_{H_2(S)}/\Gamma_{tot}$ [GeV]	131.48	$7.95\cdot 10^{-4}$
$m_{H_3}/\Gamma_{\rm tot}~[{\rm GeV}]$	313.33	6.45
$m_{H^\pm}/\Gamma_{\rm tot}~[{\rm GeV}]$	311.54	5.79
$\sigma^{\sf LO}_{SS}$ [pb]	3.20	
$\sigma^{\text{LO}}_{SS ightarrow 4b}$ [pb]	1.26	
$\sigma^{\sf LO}_{Sh}$ [fb]	49.17	
$\sigma^{ extsf{LO}}_{Sh o 4b}$ [fb]	17.79	
$\mathcal{L}_{excl} \; [fb^{-1}]$	287	
${\sf Re}(m_{12}^2)$ [GeV ²]	13786	
$lpha_1$	1.041	
$lpha_2$	0.0262	
$lpha_3$	-1.570	
aneta	2.220	

 $\diamond \ S \ {\rm here} \ {\rm means} \ {\rm large} \\ {\rm pseudoscalar} \ {\rm admixture} \\$

$$\diamond \; \sigma^{\rm NLO} \sim 2 \sigma^{\rm LO}$$

◇ $H_2H_2 = SS$ enhancement due to resonant H_3 production w/ subsequent decay into SS: BR($H_3 → SS = 0.456$)

$$R_{13}^2 = 6.838 \cdot 10^{-4},$$

$$R_{23}^2 = 0.999$$

$$R_{33}^2 = 1.412 \cdot 10^{-7}$$

(3) $\mathcal{N}MSSM \mathcal{B}enchmark \mathcal{P}oints - \mathcal{M}ax \sigma(hh \rightarrow (b\bar{b})(b\bar{b}))$

$m_{H_1}/\Gamma_{\sf tot}~[{\sf GeV}]$	125.03	$3.60\cdot 10^{-3}$
$m_{H_2(S)}/\Gamma_{\mathrm{tot}}$ [GeV]	170.66	0.27
$m_{H_3}/\Gamma_{\rm tot}~[{\rm GeV}]$	454.90	2.80
$m_{A_1(S)}/\Gamma_{tot}$ [GeV]	69.03	7.26
$m_{A_2}/\Gamma_{\rm tot}~[{\rm GeV}]$	446.26	4.34
$m_{H^{\pm}}/\Gamma_{\rm tot}~[{\rm GeV}]$	440.31	3.77
σ_{hh}^{LO} [fb]	34.18	
$\sigma^{ m LO}_{hh ightarrow 4b}/{ m wrt.}$ SM [fb]	12.42	1.99
\mathcal{L}_{excl} [fb $^{-1}$]	287	
aneta	2.919	
λ	0.613	
κ	0.331	
A_{λ} [GeV]	-348	
A_{κ} [GeV]	-51	
$\mu_{eff} \; [GeV]$	-159	

 \diamond H_2 singlet-like scalar

 A_1 singlet-like pseudoscalar

$$\diamond \; \sigma^{\rm NLO} \sim 2 \sigma^{\rm LO}$$

(3) $\mathcal{N}MSSM \mathcal{B}enchmark \mathcal{P}oints - \mathcal{A}Iso \mathcal{M}ax \sigma(hA_S, A_SA_S \rightarrow (b\bar{b})(b\bar{b}))$

m_{H_1}/Γ_{tot} [GeV]	125.03	$3.60\cdot 10^{-3}$
$m_{H_2(S)}/\Gamma_{\rm tot}~[{\rm GeV}]$	170.66	0.27
$m_{H_3}/\Gamma_{\rm tot}~[{\rm GeV}]$	454.90	2.80
$m_{A_1(S)}/\Gamma_{tot}$ [GeV]	69.03	7.26
$m_{A_2}/\Gamma_{\rm tot}~[{\rm GeV}]$	446.26	4.34
$m_{H^\pm}/\Gamma_{\rm tot}~[{\rm GeV}]$	440.31	3.77
$\sigma^{ m LO}_{hA_S}$ [fb]	69.97	
$\sigma^{\mathrm{LO}}_{hA_S ightarrow 4b}$ [fb]	38.32	
$\sigma^{ m LO}_{A_SA_S}$ [fb]	69.78	
$\sigma^{\mathrm{LO}}_{A_SA_S ightarrow 4b}$ [fb]	57.58	
$\mathcal{L}_{excl} \; [fb^{-1}]$	287	

 \diamond H_2 singlet-like scalar A_1 singlet-like pseudoscalar

 $\diamond \ \sigma^{\rm NLO} \sim 2 \sigma^{\rm LO}$

- $\diamond hA_S$ enhancement due to resonant A_2 production w/ subsequent decay into $hA_{1(S)}$
- ◇ $A_S A_S$ enhancement due to resonant H_2 production w/ subsequent decay into $A_S A_S$: BR $(H_2 → A_S A_S)$ =0.97

(4) $\mathcal{N}MSSM \mathcal{B}enchmark \mathcal{P}oints - \mathcal{M}ax \sigma(hH_S \rightarrow (b\overline{b})(b\overline{b}))$

$m_{H_1(S)}/\Gamma_{tot}$ [GeV]	100.11	$1.00\cdot 10^{-3}$
$m_{H_2}/\Gamma_{ m tot}$ [GeV]	125.23	$3.56\cdot 10^{-3}$
$m_{H_3}/\Gamma_{\rm tot}~[{\rm GeV}]$	660.38	7.80
$m_{A_1(S)}/\Gamma_{\rm tot}~[{\rm GeV}]$	217.21	$6.92\cdot 10^{-4}$
$m_{A_2}/\Gamma_{\rm tot}~[{\rm GeV}]$	657.01	8.73
$m_{H^\pm}/\Gamma_{\rm tot}~[{\rm GeV}]$	651.11	7.54
$\sigma^{\sf LO}_{hH_S}$ [fb]	15.68	
$\sigma^{\mathrm{LO}}_{hH_S ightarrow 4b}$ [fb]	8.43	
$\mathcal{L}_{excl} \; [fb^{-1}]$	183	
aneta	3.601	
λ	0.589	
κ	0.251	
A_{λ} [GeV]	593	
A_{κ} [GeV]	-148	
$\mu_{eff} \; [GeV]$	178	

- $\diamond H_1$ singlet-like scalar
 - A_1 singlet-like pseudoscalar

$$\diamond \ \sigma^{\rm NLO} \sim 2 \sigma^{\rm LO}$$

$\mathcal{T}hank \ \mathcal{Y}ou \ \mathcal{F}or \ \mathcal{Y}our \ \mathcal{A}ttention!$

