Massively parallel, three-dimensional photon counting: a versatile tool for quantum experiments

Edoardo Charbon

EPFL, Lausanne, Switzerland

Photon Counting

Experiments Requiring Photon Counting

Experiments Requiring Photon Counting

Other Applications in a Consumer Space

Photon Counters

Photomultiplier Tubes (PMTs)

Silicon Photomultipliers (SiPMs)

Principle of Operation

What You Can Do with SPADs

- Single-photon detection
 - Timing
 - Counting
- Multi-photon detection
 - Gating
 - Inter-arrival timing

Today's Industrial SPADs (STMicroelectronics)

Drawing: D. Stoppa

Backside Illumination (BSI)

- Improve fill factor
- Free up space for processing

3D IC Integration

Some SPAD Applications

3D Vision

80

120

100

Fluorescence Lifetime Imaging Microscopy (FLIM)

Quantum Computing QRNG

Super-resolution (GSDIM)

Time-of-Flight Positron Emission Tomography (TOF PET)

© 2019 Edoardo Charbon

An Example: Time-of-Flight

3D Imaging Techniques

- Direct time-of-flight
 - Explicit measurement of the time
 - No ambiguity but precise chronometer per pixel

- Indirect time-of-flight
 - Implicit measurement through phase
 - Ambiguity but simple to implement

Direct Time-of-Flight

Source: Alexis Rochas

From a <u>short burst</u> or pulse of light, one can get distance from source to receiver

m ns mm ps

3D Imaging Applications

Autonomous Vehicle

Driving Assistance

Next Generation 3D Vision Applications

Service Drone and Robot

Machine Vision

Gesture Recognition

© 2019 Edoardo Charbon

Another Example: SPADs in Basic Science

$$f_{k:n}(t) = n \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} f(t)F(t)^{k-1}(1-F(t))^{n-k}$$

 $f_{k:n}(t)$: k-th order statistics f(t): probability density function F(t): cumulative density function **Assumptions:**

- Each photon is stat. independent
- The pulse has a Gaussian p.d.f.

...and SPADs in Space

- Navigation and guidance of rovers
- Controlled landing on planetary bodies

SPAD Image Sensors Targeted to Apps

SPAD Image Sensors Targeted to Apps

SPAD Image Sensors

- Dead time
- Dark counts
- Photon detection probability (PDP)
- <u>Timing resolution</u>
- Afterpulsing

SPAD Image Sensors

- Dead time
- Dark counts
- Photon detection probability (PDP)
- <u>Timing resolution</u>
- Afterpulsing

Photon Detection Efficiency (PDE) = PDP × SENSITIVE_AREA

SPAD Image Sensors

- Dead time
- Dark counts
- Photon detection probability (PDP)
- **Timing resolution**
- Afterpulsing
- ... and in SPAD imagers
- Crosstalk
- PDE Uniformity
- DCR Uniformity
- Timing Uniformity

DCR Uniformity

Courtesy: Yuki Maruyama

© 2019 Edoardo Charbon

PDE State-of-the-Art (CMOS)

Timing Resolution

33

DCR vs. PDE

From a SPAD to a Camera

First, Let Us Define the Pixel

1D Arrays

- No sharing of resources
- High fill factor

Data Readout

2D Arrays

Fully parallel

Column-Parallel

3D Integration

The Ocelot Approach

S. Lindner, C. Zhang *et al., Symposium of VLSI*, 2018 C. Zhang, S. Lindner *et al., JSSC*, 2019

Collision Detection Bus

Dual-clock Time-to-digital Converter

- STOP_HF = 320 MHz
- LSB = 48.8 ps (nominal)

Partial-histogramming Readout

Ocelot

• 180nm CMOS

S. Lindner, C. Zhang *et al., Symposium of VLSI*, 2018 C. Zhang, S. Lindner *et al., JSSC*, 2019

- 28% Fill factor (28.5µm pitch)
- 11.2 Gbit/s output data bandwidth

Results - TDC Nonlinearity

- DNL = +0.22/-1 LSB
- INL = +2.39/-2.6 LSB
- After calibration for clock transition:
- DNL = +0.6/-0.48 LSB
- INL = +0.89/-1.67 LSB

Single-point Measurement

- 2 mW laser
- 637 nm
- Non-linearity = 8.8 cm
- Detector verified for higher wavelengths

Flash LiDAR

S. Lindner, C. Zhang et al., Symposium of VLSI, 2018

- 1m distance
- 8 illumination exposures
- 14.9-to-1 data compressior

Flash Video Demo

- 2 mW laser
- 637 nm
- 126 × 128 (half sensor) ²⁰
- 30 fps

Ocelot Comparison

Parameter	Unit	This work	JSSC'2013	VLSI'2017	JSSC'2017
Technology	nm	180 nm	180 nm	130nm CIS	150 nm
Sensor resolution		252 × 144	$32 \times 1^{(1)}$	$512 \times 1^{(1)}$	$64 \times 64^{(1)}$
	Sense	or characteris	stics	-	
Pixel pitch	μm	28.5	25	23.78	60
Fill factor	%	28	70	49.31	26.5
DCR @ VEB	cps/µm²	0.62 @ 5V	<mark>6 @ 3.3</mark>	N/A	57@3
Integrated histogramming		Per-pixel	None	Per-pixel	None
No. of TDCs		1728	32	512	4096
TDC area	μm ²	4200	31000 ⁽²⁾	5400 ⁽²⁾	N/A
	Measured	distance perf	formance		
Distance range	m	2 - 50	128	N/A	367 - 5862 ⁽⁴⁾
Accuracy <mark>(</mark> Non-linearity)	m	0.08	0.37 ⁽³⁾	N/A	1.5-35 ⁽⁴⁾
⁽¹⁾ Macro pixel resolution. ⁽²⁾ Es	timated from	paper. ⁽³⁾ Me	easured at 100r	n. ⁽⁴⁾ Emulate	d results.

2D Arrays Fully parallel Column-Parallel **3D** Integration

Localization Super-resolution

- PALM
- STORM
- dSTORM/GSDIM*

*) GSDIM = Ground-state depletion and single-molecule return

Localization Super-resolution

SwissSPAD

S. Burri et al., Optics Express, 2014

Pixel Architecture

S. Burri et al., Optics Express, 2014

Pixel Layout

Gating Synchronization: B-Trees

Courtesy: Yuki Maruyama

Gate Pulse Generation

Courtesy: Yuki Maruyama

Overall Readout Architecture

Gate Accuracy and Uniformity

- 4ns gating (138ps FWHM)
- 156kfps frame rate

J. Mata Pavia et al., Optics Express, 2014

J. Mata Pavia et al., Optics Express, 2014

SwissSPAD: Pixel Resolution vs. Speed

GSDIM Images

GSDIM Images

U2OS cells stained with Alexa 647, Vectashield buffer

I.M. Antolovic, S. Burri, R. Hoebe, Y. Maruyama, C. Bruschini, E. Charbon, Nature Scientific Reports, 2017

Localization Accuracy

Blinking Statistics

- Blinking of molecules important signature
- Better resolution due to multiplication of CSDIM localizations

I.M. Antolovic, S. Burri, R. Hoebe, Y. Maruyama, C. Bruschini, E. Charbon, *MDPI Sensors*, **16**, 1005, 2016

Blinking Effects

$\textbf{6.4} \ \mu \textbf{s} \ \textbf{frame time}$

1.6 ms frame time

0.3 ms frame time

10 ms frame time

SwissSPAD-2

SwissSPAD-2 Pixel

Pixel Features:

- Passive quenching
- Cascode transistor:
 - Excess bias up to 6.6
 - Higher PDP
- Active recharge
- Time gating
- Memory reset
- 1-bit DRAM
- Row selection
SwissSPAD-2 Pixel

- 512x512 SPAD pixels
- 2x fill factor
- 5x less DCR
- 2x more PDP
- Better uniformity, crosstalk
- Equal readout speed, gating

SwissSPAD-2 Architecture

Number of Pixels	512×512
Process	0.18 μm CMOS
Chip Size	9.5×9.6 mm
Pixel Pitch	16.38 µm
Fill Factor	10.5%
Max. Frame Rate	97.7 kfps
(1-bit)	
Max. PDP	55% (V _{ex} = 11 V, λ = 520 nm)
Dark Count Rate	0.18 Hz/μm² (V _{ex} = 3 V) 1.67 Hz/μm² (V _{ex} = 11 V)
Gate Jitter	110 ps

SwissSPAD-2 System

A. Ulku *et al., IISW,* 2017

SwissSPAD-2 Gating Trials

Comparison with EMCCD

Fluorescence Lifetime Imaging Microscopy (FLIM)

FLIM via Gating

FLIM Histograms

Figure 19. (a) FLIM results show extracted lifetimes distribution of 31×31 pixels compared to reference lifetime of 40 μ M ICG in milk (red). (b) shows the comparison of intensity and lifetime per pixel.

I.M. Antolovic, S. Burri, R. Hoebe, Y. Maruyama, C. Bruschini, E. Charbon, MDPI Sensors, 16, 1005, 2016

Video-rate FLIM (> 100fps)

In Vivo ICG Lifetime Measurements

H. Homulle et al., Biomedical Optics Express, 2015

- Comparison with literature lifetime
- Use of ICG in models for cancer enhancement

Phasor Representation

- Cosine transform of lifetime
- 2D representation of multiple fluorophores
- Easy interpretation of non-radiative energy transfer (FRET)

SwissSPAD-2 Gating Trials

00

ATTO550 R6G

Acquisition Frame Rate [fps]

A. Ulku, C. Bruschini, I.M. Antolovic, S. Weiss, X. Michalet, E. Charbon, SPIE Photonics West, 2019

Lifetime Stability with Short Gates

A. Ulku et al., JSTQE 2018

Backside Illumination (BSI)

- Tier 1: SPADs + microlenses
- Tier 2: quenching, recharge, TDCs, multi-core, memories, communication unit, I/O

A.R. Ximenes, P.Padmanabhan et al., ISSCC, 2018

3D-Stacked Chip Micrograph

3D-Stacked Chip Micrograph

The LiDAR System

Distance Measurements

A.R. Ximenes, P.Padmanabhan et al., ISSCC, 2018

Interference Suppression

