# JAM: Update on universal QCD analysis

## Alberto Accardi

thanks to Wally Melnitchouk for slides

## Overview

- JAM (Jefferson Lab Angular Momentum) collaboration aims to study the parton structure of hadrons through extraction of "quantum probability distributions" (PDFs, FFs, TMDs) via global QCD analysis using <u>Monte Carlo-based methods</u>
- Methodology is based on <u>Bayesian statistics</u> and Monte Carlo sampling of the parameter space
  - $\rightarrow$  existence of multiple solutions "inverse problem"
  - $\rightarrow$  robust determination of PDF uncertainties
- Inter-dependence of observables on distributions requires <u>simultaneous</u> extraction of unpolarized and polarized PDFs & fragmentation functions

First application of IMC — spin structure

First JAM MC analysis studied impact of JLab data on spin structure of the nucleon





Sato, Melnitchouk, Kuhn, Ethier, Accardi (2016)

- → inclusion of JLab data increases # data points by factor ~ 2
- → reduced uncertainty in  $\Delta s^+$ ,  $\Delta g$ through  $Q^2$  evolution
- → s-quark polarization *negative* from inclusive DIS data (assuming SU(3) symmetry)

First application of IMC — spin structure

Inclusive DIS data cannot distinguish between q and  $\overline{q}$ 

- → 2 observables  $(g_1^p, g_1^n)$  can determine up to 2 unknowns, e.g.  $\Delta u + \Delta \bar{u}, \Delta d + \Delta \bar{d}$  — sea quarks from  $Q^2$  dependence



- Global analysis of DIS + SIDIS data gives different sign for strange quark polarization for different fragmentation functions!
  - $\rightarrow \Delta s > 0$  for "DSS" FFs, <u>but</u>  $\Delta s < 0$  for "HKNS" FFs
  - need to understand origin of differences in fragmentation functions

#### IMC analysis of fragmentation functions

■ Analysis of single-inclusive  $e^+e^-$  annihilation data for  $\pi$ , K production from  $Q \sim 10$  GeV to Z boson pole



 $e^+e^- \to h X$ 

single-inclusive annihilation (SIA)



 $\rightarrow$  convergence after ~ 20 iterations

## IMC analysis of fragmentation functions

Analysis of single-inclusive  $e^+e^-$  annihilation data for  $\pi$ , K production from  $Q \sim 10$  GeV to Z boson pole



Ethier, Sato, Melnitchouk (2017)

- $\rightarrow$  favored  $u^+ = u + \bar{u} \& s^+ = s + \bar{s}$  FFs well constrained
- → larger  $s \to K$  fragmentation cf. HKNS suggests less negative  $\Delta s$

First simultaneous extraction of spin PDFs and FFs, fitting polarized DIS + SIDIS (HERMES, COMPASS) and SIA data



Ethier, Sato, Melnitchouk (2017)

■ Polarized strangeness in previous, DIS-only analyses was negative at  $x \sim 0.1$ , induced by SU(3) and parametrization bias



- $\rightarrow$  weak sensitivity to  $\Delta s^+$  from DIS data & evolution
  - SU(3) pulls  $\Delta s^+$  to generate moment ~ -0.1
  - negative peak at  $x \sim 0.1$  induced by fixing  $b \sim 6 8$

#### Statistical distribution of lowest moments (axial charges)



- $\rightarrow$  triplet charge  $g_A$  consistent with SU(2) value
- $\rightarrow$  hint of SU(3) breaking in octet charge  $a_8$  Bass, Thomas (2010)
- $\rightarrow$  less negative  $\Delta s = -0.03(10)$  gives larger total helicity  $\Delta \Sigma = 0.36(9)$

- What impact does unpolarized strange PDF have on the extraction of polarized strange?
  - $\rightarrow$  only systematic way is to fit unpolarized PDFs, polarized PDFs and fragmentation functions simultaneously...
- Shape of unpolarized strange PDF is interesting (and controversial) in its own right!
  - $\rightarrow$  historically, strange to nonstrange ratio  $R_s = \frac{s + \bar{s}}{\bar{n} + \bar{d}} \sim 0.4$





Study the impact of SIDIS data on <u>unpolarized</u> PDFs

- $\rightarrow$  unpolarized fixed-target DIS on p, d (SLAC, BCDMS, NMC), HERA collider data (runs I & II)
- → Drell-Yan (Fermilab E866)
- $\rightarrow$  SIDIS pion & kaon multiplicities for deuteron (COMPASS)
- $\rightarrow e^+e^-$  annihilation (DESY, LEP/CERN, SLAC, KEK)
- 52 shape parameters + 41 "nuisance" parameters for systematic uncertainties (data normalizations)

953 fits to 4366 data points (2680 DIS, 992 SIDIS, 250 DY, 444 SIA)

 $\rightarrow$  such an analysis has never been attempted before...

PDFs

FFs



valence & light sea quark broadly in agreement with other groups
 striking <u>suppression of strange</u> PDF compared to ATLAS extraction



 $\rightarrow$  SIDIS + SIA data force strange to kaon FF to be larger



SIA data at large z
 strongly disfavor
 small strange to K FF



 $\rightarrow$  vital role played by SIDIS + SIA data in constraining strange PDF

#### PDFs in lattice QCD

Recent progress in extracting x dependence of PDFs in lattice QCD from matrix element of nonlocal operator

 $h(z, P_z) = \langle P | \overline{\psi}(0, z) \gamma_z \mathcal{W}(z, 0) \psi(0, 0) | P \rangle$ 

$$= \int_{-\infty}^{\infty} dy \ e^{iyP_z z} \ \widetilde{q}(y, P_z)$$

 $\rightarrow$  quasi-PDF  $\tilde{q}$  related to light-cone PDF via matching kernel  $\tilde{C}$ 

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \ \widetilde{C}\left(\frac{x}{y},\mu,P_z\right) \ \widetilde{q}(y,P_z,\mu)$$

Conflicting results on sign of  $\overline{d} - \overline{u}$  asymmetry





## PDFs in lattice QCD

■ Fit lattice observable directly within JAM framework



→ cannot determine  $\overline{d} - \overline{u}$ from present lattice data



## PDFs in lattice QCD

■ Fit lattice observable directly within JAM framework



 better agreement between lattice and experiment for polarized PDFs (within larger uncertainties)

## Outlook

New paradigm in global analysis — simultaneous determination of collinear distributions using MC sampling of parameter space

Next steps: simultaneous analysis of all collinear distributions
 unpolarized & polarized PDFs and FFs

 (including jet, W production, ... data)

Longer-term: technology developed here will be applied to global QCD analysis of transverse momentum dependent (TMD) distributions — map out full 3-d image of hadrons

## Bibliography

- Strange quark suppression from a simultaneous Monte Carlo analysis of PDFs and fragmentation functions N. Sato, C. Andres, J. Ethier, W. Melnitchouk: <u>arXiv:1905.03788 [hep-ph]</u>
- *First Monte Carlo global QCD analysis of pion parton distributions* P. Barry, N. Sato, W. Melnitchouk, C.-R. Ji: <u>Phys. Rev. Lett. 121</u>, 152001 (2018)
- First Monte Carlo global analysis of nucleon transversity with lattice QCD constraints
   H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, H. Shows: <u>Phys. Rev. Lett. 120</u>, 152502 (2018)
- First simultaneous extraction of spin-dependent PDFs and fragmentation functions from a global QCD analysis
   J. Ethier, N. Sato, W. Melnitchouk: <u>Phys. Rev. Lett. **119**</u>, 132001 (2017)
- First Monte Carlo analysis of fragmentation functions from e<sup>+</sup>e<sup>-</sup> annihilation
   N. Sato, J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi: <u>Phys. Rev. D 94, 114004 (2016)</u>
- Iterative Monte Carlo analysis of spin-dependent parton distributions
   N. Sato, W. Melnitchouk, S. Kuhn, J. Ethier, A. Accardi: <u>Phys. Rev. D 93</u>, 074005 (2016)
- *Constraints on spin-dependent parton distributions at large x from global QCD analysis* P. Jimenez-Delgado, H. Avakian, W. Melnitchouk: <u>Phys. Lett. B 738, 263 (2014)</u>
- Impact of hadronic and nuclear corrections on global analysis of spin-dependent PDFs
   P. Jimenez-Delgado, A. Accardi, W. Melnitchouk: <u>Phys. Rev. D 89, 034025 (2014)</u>