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1) Needed to calculate transversely differential cross 
sections in pQCD

2) More detail about hadron structure than standard parton
densities 

Transverse Momentum Dependent Parton 
Densities
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ūd � ud̄ (506)

d�

d⌦

����
CM

=
1

64⇡2s
|M2!2

(s, t)|2 (507)

d�

d⌦

����
CM

= |f |2 (508)

1

(q2)2
L(l, l0)µ⌫W (P, P 0

)µ⌫ =
1

Q4
Lµ⌫Wµ⌫ (509)

30

ki =

✓
MiTp

2
eyi ,�MiTp

2
e�yi ,kT

◆
kf =

✓
MfTp

2
eyi ,

MfTp
2
e�yf ,kT

◆
(492)

e2y,
m

Q
,
qT
Q

(493)

e2y,
m

Q
,
qT
Q

(494)

e2y,
m

Q
,
qT
Q

(495)

e2y,
m

Q
,
qT
Q

(496)

m

Q
,
m

qT
(497)

e�2y,
m

Q
,
qT
Q

(498)

m

Q
,
qT
Q

(499)

�PDF = �FF (500)

↵s ! ↵s(µ) f(x) ! f(x;µ) (501)

l+
R
⇠ m2

Q
l+ (502)

l�
R
⇠ m2

Q
l� (503)
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uū+ dd̄p
2
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uū+ dd̄p
2
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• Collinear / DGLAP, Evolution with Scale:

• TMD Case:
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Finite coefficient

5

derivation see Ref. [8]. We are mainly interested in the first term on the right side of Eq. (4), which corresponds to the
TMD term of the schematic formula in Eq. (1) with all transverse coordinate dependent terms isolated. This term is
derived using the approximation that PT ⌧ Q. For an accurate calculation of the full cross section, a correction term,
the Y -term, is need for the region PT ⇠ Q, and this is symbolized by the last term in Eq. (4). From here forward,
we will neglect the Y -term contribution and focus only on the TMD term. We will remark further on whether this is
reasonable in Sect. VI.

Over shorter distance scales, 1/bT becomes a hard scale, and the transverse momentum dependence can itself be
calculated in perturbation theory. With a choice of renormalization scale µ ⇠ 1/bT , ↵s(⇠ 1/bT ) approaches zero for
small sizes due to asymptotic freedom, ensuring that the short range transverse coordinate dependence is reliably
calculable in perturbation theory. For large transverse distances, transverse coordinate dependence becomes non-
perturbative (corresponding, in momentum space, to the onset of small intrinsic bound state transverse momentum).
There, a prescription is needed to tame the growth of ↵s(1/bT ) match to a non-perturbative large distance description.
The renormalization group scale is therefore chosen to obey

µb ⌘ C1/|b⇤(bT )| , (5)

where b⇤(b) is a function of bT that equals bT at small bT but freezes in the limit where bT becomes non-perturbatively
large, i.e., when bT is larger than some fixed bmax. This non-perturbative function must obey

b⇤(bT ) =

⇢
bT bT ⌧ bmax

bmax bT � bmax .
(6)

The most common taming procedure uses

b⇤(bT) ⌘
bTp

1 + b
2
T
/b2max

. (7)

Although any function obeying Eq. (6) is consistent with the CSS formalism, Eq. (7) is one of the simplest choices
and the one that we will use in this paper. The factor C1 is an arbitrary numerical constant that can be chosen to
minimize higher order corrections. It it typically fixed to be C1 = 2e��E . With the bT dependence of the perturbatively
calculable part of Eq. (4) frozen above a certain bmax, the remaining non-perturbative evolution is described by the
function gK(bT ;µb), which is totally universal and independent of Q, x, or z. The non-perturbative evolution function
gK(bT ;µb) must vanish as a power of bT as bT ! 0.

The value of bmax, as well as the functional form for the matching in Eq. (7), is exactly arbitrary in full QCD. The
role of bmax is to define the boundary between what are regarded as perturbative and non-perturbative regions of
bT -dependence. In practical applications, it should be chosen large enough to maximize the perturbative content of the
calculation, while small enough to maintain a safe perturbative treatment of perturbatively calculable parts at a given
order of perturbation theory. The numerical value of bmax depends generally on the order of perturbation theory. If
it is chosen too large, then perturbation theory is applied over a large range of bT where perturbation theory becomes
suspect. If bmax is too small, then almost all of the calculation is e↵ectively treated as non-perturbative and requires
extensive fitting to mimic the behavior of �K(g(µ0)) and K̃(b⇤;µb). In that case, most of the work in fitting non
perturbative functions actually goes into reproducing results that could be calculated perturbatively. The formalism
is setup to be neutral as to precisely where the transition from perturbative to non-perturbative bT dependence
occurs so that any given degree of precision may be achieved through a combination of higher order calculations and
non-perturbative fitting.

Note also that the choices of b⇤(bT) and gK(bT ;µb) are not independent and there could in principle be di↵erent
combinations that correspond to the same non-perturbative matching. Both combine to give the description of the
non-perturbative region at large bT . Indeed, it is possible in principle that the fitting to the non-perturbative region
of bT could be achieved entirely by adjusting the form of b⇤(bT).

A frequently used ansatz for gK(bT ;µb) is

gK(bT ;µb) = �g2
1

2
b
2
T
, (8)

where g2 is a Gaussian fit parameter. This choice for gK(bT ;µb) e↵ectively imposes a strong cuto↵ on non-perturbative
regions of bT whenever Q is significantly larger than Q0.

Until recently, the CSS formalism has been applied mainly to Drell-Yan-like processes, with only a relatively small
number of treatments [29, 30] dedicated to SIDIS. The early CSS studies were mainly oriented toward obtaining an
accurate perturbative description of the di↵erential cross section over a wide range of relatively large qT , particularly
for qT � ⇤QCD, with maximum input from perturbation theory. With access to hadronic structure not being the
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derivation see Ref. [8]. We are mainly interested in the first term on the right side of Eq. (4), which corresponds to the
TMD term of the schematic formula in Eq. (1) with all transverse coordinate dependent terms isolated. This term is
derived using the approximation that PT ⌧ Q. For an accurate calculation of the full cross section, a correction term,
the Y -term, is need for the region PT ⇠ Q, and this is symbolized by the last term in Eq. (4). From here forward,
we will neglect the Y -term contribution and focus only on the TMD term. We will remark further on whether this is
reasonable in Sect. VI.

Over shorter distance scales, 1/bT becomes a hard scale, and the transverse momentum dependence can itself be
calculated in perturbation theory. With a choice of renormalization scale µ ⇠ 1/bT , ↵s(⇠ 1/bT ) approaches zero for
small sizes due to asymptotic freedom, ensuring that the short range transverse coordinate dependence is reliably
calculable in perturbation theory. For large transverse distances, transverse coordinate dependence becomes non-
perturbative (corresponding, in momentum space, to the onset of small intrinsic bound state transverse momentum).
There, a prescription is needed to tame the growth of ↵s(1/bT ) match to a non-perturbative large distance description.
The renormalization group scale is therefore chosen to obey

µb ⌘ C1/|b⇤(bT )| , (5)

where b⇤(b) is a function of bT that equals bT at small bT but freezes in the limit where bT becomes non-perturbatively
large, i.e., when bT is larger than some fixed bmax. This non-perturbative function must obey

b⇤(bT ) =

⇢
bT bT ⌧ bmax

bmax bT � bmax .
(6)

The most common taming procedure uses

b⇤(bT) ⌘
bTp

1 + b
2
T
/b2max

. (7)

Although any function obeying Eq. (6) is consistent with the CSS formalism, Eq. (7) is one of the simplest choices
and the one that we will use in this paper. The factor C1 is an arbitrary numerical constant that can be chosen to
minimize higher order corrections. It it typically fixed to be C1 = 2e��E . With the bT dependence of the perturbatively
calculable part of Eq. (4) frozen above a certain bmax, the remaining non-perturbative evolution is described by the
function gK(bT ;µb), which is totally universal and independent of Q, x, or z. The non-perturbative evolution function
gK(bT ;µb) must vanish as a power of bT as bT ! 0.

The value of bmax, as well as the functional form for the matching in Eq. (7), is exactly arbitrary in full QCD. The
role of bmax is to define the boundary between what are regarded as perturbative and non-perturbative regions of
bT -dependence. In practical applications, it should be chosen large enough to maximize the perturbative content of the
calculation, while small enough to maintain a safe perturbative treatment of perturbatively calculable parts at a given
order of perturbation theory. The numerical value of bmax depends generally on the order of perturbation theory. If
it is chosen too large, then perturbation theory is applied over a large range of bT where perturbation theory becomes
suspect. If bmax is too small, then almost all of the calculation is e↵ectively treated as non-perturbative and requires
extensive fitting to mimic the behavior of �K(g(µ0)) and K̃(b⇤;µb). In that case, most of the work in fitting non
perturbative functions actually goes into reproducing results that could be calculated perturbatively. The formalism
is setup to be neutral as to precisely where the transition from perturbative to non-perturbative bT dependence
occurs so that any given degree of precision may be achieved through a combination of higher order calculations and
non-perturbative fitting.

Note also that the choices of b⇤(bT) and gK(bT ;µb) are not independent and there could in principle be di↵erent
combinations that correspond to the same non-perturbative matching. Both combine to give the description of the
non-perturbative region at large bT . Indeed, it is possible in principle that the fitting to the non-perturbative region
of bT could be achieved entirely by adjusting the form of b⇤(bT).

A frequently used ansatz for gK(bT ;µb) is

gK(bT ;µb) = �g2
1

2
b
2
T
, (8)

where g2 is a Gaussian fit parameter. This choice for gK(bT ;µb) e↵ectively imposes a strong cuto↵ on non-perturbative
regions of bT whenever Q is significantly larger than Q0.

Until recently, the CSS formalism has been applied mainly to Drell-Yan-like processes, with only a relatively small
number of treatments [29, 30] dedicated to SIDIS. The early CSS studies were mainly oriented toward obtaining an
accurate perturbative description of the di↵erential cross section over a wide range of relatively large qT , particularly
for qT � ⇤QCD, with maximum input from perturbation theory. With access to hadronic structure not being the
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2

s
; (b) The TMD hard scattering coe�cient

for Drell-Yan to order a2
s
; (c) The anomalous dimensions

to order a3
s
; (d) The CSS2 evolution kernel K̃ to order

a2
s
. We give full details of the non-trivial methods by

which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3

s

value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3

s
. That the result

of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2
s

16⇡2
(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
bT. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large bT, and then redefined various functions.
The result was of the form
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+ suppressed corrections. (2)

Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and qT. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives

C
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(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.
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No explicit hard part
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2
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; (b) The TMD hard scattering coe�cient

for Drell-Yan to order a2
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; (c) The anomalous dimensions

to order a3
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; (d) The CSS2 evolution kernel K̃ to order
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s
. We give full details of the non-trivial methods by

which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3

s

value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3
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. That the result

of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].
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The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
bT. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large bT, and then redefined various functions.
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Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and qT. The total
center of mass energy is
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[+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z, zk2T ; ⇣FF;µ)

=
X
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f
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f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ) .

(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.

F̃f/P (x,bT ; ⇣PDF, µ)
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. (112)

No explicit hard part
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Small PhT

(168)

= � @

@ ln b2
T

K̃(bT ;µ) (169)

F̃f/P (x,bT;Q,Q
2) = (170)

F̃f/P (x,bT;µ0, Q
2
0) exp

(
K̃(bT ;µ0) ln

Q
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H ⌦ fq/P (x1) ⌦ fq̄/P̄ (x2) (172)
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H ⌦ fq/P (x) ⌦ dH/q(z) (173)
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H(µ/Q,↵s(µ)) ⌦ fq/P (x;µ) ⌦ dH/q(z;µ) (174)
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Z

H(Q) ⌦ fq/P (x1) ⌦ fq̄/P̄ (x2) (175)

� ⇠
Z

H ⌦ Fq/P (x1,k1T ) ⌦ Fq̄/P̄ (x2,qT � k1T ) (176)

d� ⇠
Z

H(µ/Q,↵s(µ)) ⌦ Fq/P (x,kT , µ, ⇣1) ⌦ DH/q(z,pT + kT , µ, ⇣2) (177)

d� ⇠
X

i

Z
H(Q)i,DY ⌦ Fq/P (x1,k1T ) ⌦ Fq̄/P̄ (x2,qT � k1T ) (178)
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Z

H(Q) ⌦ Fq/P (x1,k1T , S1) ⌦ Fq̄/P̄ (x2,qT � k1T , S2) (179)
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II. DISCUSSION

...................

Acknowledgments

This work was supported by...

??

CSS1 = Collins-Soper-Sterman (≈1985) 



2

on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2

s
; (b) The TMD hard scattering coe�cient

for Drell-Yan to order a2
s
; (c) The anomalous dimensions

to order a3
s
; (d) The CSS2 evolution kernel K̃ to order

a2
s
. We give full details of the non-trivial methods by

which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3

s

value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3

s
. That the result

of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2
s

16⇡2
(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
bT. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large bT, and then redefined various functions.
The result was of the form

d�

dQ2 dy dq2T
=

4⇡2↵2

9Q2s
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j

Z
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⇥ exp

(
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µ
2
Q

µ
2
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dµ02

µ02

"
ACSS1(as(µ

0);C1) ln

 
µ2
Q

µ02

!
+BCSS1, DY(as(µ

0);C1, C2)

#)

⇥ exp
h
�gCSS1

j/A
(xA, bT; bmax)� gCSS1

|̄/B
(xB , bT; bmax)� gCSS1

K
(bT; bmax) ln(Q

2/Q2
0)
i

+ suppressed corrections. (2)

Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and qT. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives

C
h
F [+]
f/p Dh/f

i
=

X

f

Z
d2k1T d2k2T �

(2)(k1T + qT � k2T )F
[+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z, zk2T ; ⇣FF;µ)

=
X

f

Z
d2k1T d2k2T �

(2)(k1T +PBT,�/z � k/z)F [+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ)

=
X

f

Z
d2k1T d2k �(2)(zk1T +PBT,� � k)F [+]

f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ) .

(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.

F̃f/P (x,bT ; ⇣PDF, µ)

= F̃f/P (x,bT ;Q
2
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⇥ exp
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. (112)

No explicit hard part
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2) = (170)
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(171)
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H ⌦ fq/P (x1) ⌦ fq̄/P̄ (x2) (172)
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Z

H ⌦ fq/P (x) ⌦ dH/q(z) (173)
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Z

H(µ/Q,↵s(µ)) ⌦ fq/P (x;µ) ⌦ dH/q(z;µ) (174)

� ⇠
Z

H(Q) ⌦ fq/P (x1) ⌦ fq̄/P̄ (x2) (175)

� ⇠
Z

H ⌦ Fq/P (x1,k1T ) ⌦ Fq̄/P̄ (x2,qT � k1T ) (176)

d� ⇠
Z

H(µ/Q,↵s(µ)) ⌦ Fq/P (x,kT , µ, ⇣1) ⌦ DH/q(z,pT + kT , µ, ⇣2) (177)

d� ⇠
X

i

Z
H(Q)i,DY ⌦ Fq/P (x1,k1T ) ⌦ Fq̄/P̄ (x2,qT � k1T ) (178)

� ⇠
Z

H(Q) ⌦ Fq/P (x1,k1T , S1) ⌦ Fq̄/P̄ (x2,qT � k1T , S2) (179)
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H ⌦ Fq/P (x,kT ) ⌦ DH/q(z,pT + kT ) (180)
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d�

dQ2 dy dq2T
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4⇡2↵2

9Q2s
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j
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j|̄

(Q,µQ, as(µQ))

Z
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(2⇡)2

eiqT·bT f̃j/A(xA, bT;Q
2, µQ) f̃|̄/B(xB , bT;Q

2, µQ)

+ suppressed corrections, (6)

where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
⇣

= K̃(bT;µ). (7)

dK̃(bT;µ)

d lnµ
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2
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A solution that corresponds to Eq. (2) is
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+ suppressed corrections. (11)

Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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+ suppressed corrections, (6)

where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
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= K̃(bT;µ). (7)
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d lnµ
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A solution that corresponds to Eq. (2) is
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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+ suppressed corrections, (6)

where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY
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is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
⇣

= K̃(bT;µ). (7)

dK̃(bT;µ)

d lnµ
= � �K(as(µ)) , (8)

d ln f̃j/H(x, bT; ⇣;µ)

d lnµ
= �j(as(µ))�

1

2
�K(as(µ)) ln

⇣

µ2
, (9)

f̃j/H(x, bT; ⇣;µ) =
X

k

Z 1+

x�

d⇠

⇠
C̃PDF

j/k
(x/⇠, bT; ⇣, µ, as(µ)) fk/H(⇠;µ) + O[(mbT)

p] . (10)

A solution that corresponds to Eq. (2) is

d�

dQ2 dy dq2T
=

4⇡2↵2

9Q2s

X

j,jA,jB

HDY
j|̄

(Q,µQ, as(µQ))

Z
d2bT
(2⇡)2

eiqT·bT

⇥ e�gj/A(xA,bT;bmax)

Z 1

xA

d⇠A
⇠A

fjA/A(⇠A;µb⇤) C̃
PDF
j/jA

✓
xA

⇠A
, b⇤;µ

2
b⇤ , µb⇤ , as(µb⇤)

◆

⇥ e�g|̄/B(xB ,bT;bmax)

Z 1

xB

d⇠B
⇠B

fjB/B(⇠B ;µb⇤) C̃
PDF
|̄/jB

✓
xB

⇠B
, b⇤;µ

2
b⇤ , µb⇤ , as(µb⇤)

◆

⇥ exp

(
�gK(bT; bmax) ln

Q2

Q2
0

+ K̃(b⇤;µb⇤) ln
Q2

µ2
b⇤

+

Z
µQ

µb⇤

dµ0

µ0


2�j(as(µ

0))� ln
Q2

(µ0)2
�K(as(µ

0))

�)

+ suppressed corrections. (11)

Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
⇣

= K̃(bT;µ). (7)

dK̃(bT;µ)

d lnµ
= � �K(as(µ)) , (8)

d ln f̃j/H(x, bT; ⇣;µ)

d lnµ
= �j(as(µ))�

1

2
�K(as(µ)) ln

⇣

µ2
, (9)

f̃j/H(x, bT; ⇣;µ) =
X

k

Z 1+

x�

d⇠

⇠
C̃PDF

j/k
(x/⇠, bT; ⇣, µ, as(µ)) fk/H(⇠;µ) + O[(mbT)

p] . (10)

A solution that corresponds to Eq. (2) is

d�

dQ2 dy dq2T
=

4⇡2↵2

9Q2s

X

j,jA,jB

HDY
j|̄

(Q,µQ, as(µQ))

Z
d2bT
(2⇡)2

eiqT·bT

⇥ e�gj/A(xA,bT;bmax)

Z 1

xA

d⇠A
⇠A

fjA/A(⇠A;µb⇤) C̃
PDF
j/jA

✓
xA

⇠A
, b⇤;µ

2
b⇤ , µb⇤ , as(µb⇤)

◆

⇥ e�g|̄/B(xB ,bT;bmax)

Z 1

xB

d⇠B
⇠B

fjB/B(⇠B ;µb⇤) C̃
PDF
|̄/jB

✓
xB

⇠B
, b⇤;µ

2
b⇤ , µb⇤ , as(µb⇤)

◆

⇥ exp

(
�gK(bT; bmax) ln

Q2

Q2
0

+ K̃(b⇤;µb⇤) ln
Q2

µ2
b⇤

+

Z
µQ

µb⇤

dµ0

µ0


2�j(as(µ

0))� ln
Q2

(µ0)2
�K(as(µ

0))

�)

+ suppressed corrections. (11)

Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.

Collins, TCR (2017)
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B. RG coe�cients

Values for �j and K equal those for the quark Sudakov form factor, given our choice of normalizations, and were
already given in Eqs. (58) and (59).

C. CSS evolution coe�cient

Values for K̃ (bT;µ) are obtained from Eqs. (19), (59), and (63), and the renormalization group relation
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To use this equation to obtain terms in the perturbative expansion of K̃, the coupling as(µ0) must be expanded in
powers of as(µQ). We utilize the results up to order a2

s
for BCSS1, DY(as; 2e��E , 1) from Ref. [26], and obtain
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By di↵erentiating with respect to bT, one may easily verify that this is consistent with the so-far unused relation Eq.
(17), and the value of ACSS1(as; 2e��E) in Ref. [26].

The value of K̃ up to order a3
s
is given by calculations of the soft factor reported by Li and Zhu [13]. The

correspondence with the CSS2 version of factorization is quite non-trivial. This is because of a di↵erent organization
of factors and a di↵erent approach to rapidity divergences, in the form given by Li et al. [25]. We obtain the
correspondence in App. B. As shown there, K̃ equals the right-hand side of Eq. (4) of Ref. [13], and equals the �R of
[25]. Then the actual perturbative coe�cients when µ = 2e��E/bT are in Eq. (9) of Ref. [13], with the µ dependence
given in terms of �K by our Eq. (8). See also Ref. [11, 40] for other calculations of a di↵erently normalized version
of K̃ at order a2

s
, again starting from the operator definitions of the TMD parton densities and soft function, and in

agreement with Eq. (69).

D. Wilson coe�cients C̃ for TMD quark density

The coe�cient functions C̃ in the new formalism can now be found from those of the old by using Eq. (24), which
gives
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Example

CSS2 (Collins, 2011)

• Translation also available for 
– Nonperturbative (g) functions
– A, B
– Other resummation formulations

Collins, TCR (2017)
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TMD Factorization: Translation of 
Results
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where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
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A solution that corresponds to Eq. (2) is
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.

Sudakov Form Factor: (Moch,Vermaseren (2005), 
Vogt, Gehrmann et al (2014)) 

Ex: Konychev, Nadolsky (2006)
ResBos extractions (and others)  

αs
2 Wilson Coefficients from Collinear 

Factorization: (Catani et al, (2012)),
and SCET (Echevarria, Scimemi, Vladimirov (2016))

From 
Sudakov Form Factor: (Moch,Vermaseren (2005), 
Vogt, Gehrmann et al (2014)) 

Li, Zhu (2017) 
Vladimirov (2017)

Translate different versions of TMD results: Collins, TCR (2017)
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where the hard scattering factor HDY
j|̄

is normalized so that its lowest order term is e2
j
. The scale argument of

H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, bT;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-bT OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄
(Q,µQ, as(µQ)), to indicate that this hard part

is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and qT are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.

Translate different versions of TMD results: Collins, TCR (2017)

Ji, Sun, Xiong, Yuan, PR91 (2015)
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• How low can scales be?

• Description of large transverse momentum
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What is the relevant description?
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ūd � ud̄ (506)

d�

d⌦

����
CM

=
1

64⇡2s
|M2!2

(s, t)|2 (507)

d�

d⌦

����
CM

= |f |2 (508)

1

(q2)2
L(l, l0)µ⌫W (P, P 0

)µ⌫ =
1

Q4
Lµ⌫Wµ⌫ (509)

30

ki =

✓
MiTp

2
eyi ,�MiTp

2
e�yi ,kT

◆
kf =

✓
MfTp

2
eyi ,

MfTp
2
e�yf ,kT

◆
(492)

e2y,
m

Q
,
qT
Q

(493)

e2y,
m

Q
,
qT
Q

(494)

e2y,
m

Q
,
qT
Q

(495)

eyB,b ,
m

Q
,
qT
Q

(496)

m

Q
,
m

qT
(497)

e�yB,b ,
m

Q
,
PB,T,b

Q
(498)

m

Q
,
qT
Q

(499)

�PDF = �FF (500)

↵s ! ↵s(µ) f(x) ! f(x;µ) (501)

l+
R
⇠ m2

Q
l+ (502)

l�
R
⇠ m2

Q
l� (503)
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• TMD pdfs in physical processes
– Small 𝑞#/Q expansion

• Need to separate small and large 𝑞#/Q 

• Works best if there is a region of overlap 
between large and small 𝑞#/Q methods:

𝑑𝜎
𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞#

= 𝐻 𝑄 𝑓 𝑥, 𝑘.# ⊗ 𝑑 𝑧, 𝑧 𝑘0# + 𝑌 𝑥, 𝑧, 𝑞# + P. S. C.

Small 𝑞#/Q 
approximation

(TMD factorization)

𝑞# ~ 𝑄
correction

(collinear factorization)

𝑌 𝑥, 𝑧, 𝑞# = Large ⁄𝑞# 𝑄 Approx. − Small and Large ⁄𝑞# 𝑄 Approx.

Large and Small Transverse Momentum



Example: SIDIS

30

Proton

HX

2

�D

e↵
= 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c

t
) = �inc

2n
(s, pc

t
) (16)

�D

e↵
(17)

⇡ 34 mb (18)

pc
t
= 3.5 GeV (19)

�
1 di↵

(s, b; pc
t
) = �diff

(s, b; pc
t
)� �diff

(s, b; pc
t
)

1X

n=1

(�1)
n�1�2n(s, b; p

c

t
) (20)

�
1 di↵

(s, b; pc
t
) = �diff

(s, b; pc
t
) exp {��2(s, b; p

c

t
)} (21)

�
1 di↵

(s, b; pc
t
) = �diff

(s, b; pc
t
) exp {��2(s, b; p

c

t
)} (22)

�
n di↵

(s, b; pc
t
) =

1

n!
�diff

(s, b; pc
t
)
n
exp {��2(s, b; p

c

t
)} (23)

�
diff

(s, b; pc
t
) =

�
1� exp

�
��diff

(s, b; pc
t
)
 �

exp {��2(s, b; p
c

t
)} (24)

�(s, b) = 1� exp [��h(s, b; p
c

t
)� �s(s, b; p

c

t
) + · · · ] (25)

�h(s, b; p
c

t
) (26)

d�

dq2
T

(27)

qT (28)

q2 ⇠ Q2 � ⇤
2

QCD
(29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ k1T ⌧ Q (31)

qT ⌧ Q (32)

P (33)

k̂ + q (34)

X



Example: SIDIS

31

H

Hard PT



2

p
s = 1.8 TeV / 1.97 TeV (13)

�D
e↵ = 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c
t) = �inc

2n (s, p
c
t) (16)

�D
e↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)
1X

n=1

(�1)n�1�2n(s, b; p
c
t) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (22)

�n di↵(s, b; pct) =
1

n!
�diff (s, b; pct)

n exp {��2(s, b; p
c
t)} (23)

�diff (s, b; pct) =
�
1� exp

�
��diff (s, b; pct)

 �
exp {��2(s, b; p

c
t)} (24)

�(s, b) = 1� exp [��h(s, b; p
c
t)� �s(s, b; p

c
t) + · · · ] (25)

�h(s, b; p
c
t) (26)

d�

dqT
(27)

qT (28)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

2

p
s = 1.8 TeV / 1.97 TeV (13)

�D
e↵ = 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c
t) = �inc

2n (s, p
c
t) (16)

�D
e↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)
1X

n=1

(�1)n�1�2n(s, b; p
c
t) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (22)

�n di↵(s, b; pct) =
1

n!
�diff (s, b; pct)

n exp {��2(s, b; p
c
t)} (23)

�diff (s, b; pct) =
�
1� exp

�
��diff (s, b; pct)

 �
exp {��2(s, b; p

c
t)} (24)

�(s, b) = 1� exp [��h(s, b; p
c
t)� �s(s, b; p

c
t) + · · · ] (25)

�h(s, b; p
c
t) (26)

d�

dqT
(27)

qT (28)

qT ⇠ Q (29)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

2

p
s = 1.8 TeV / 1.97 TeV (13)

�D
e↵ = 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c
t) = �inc

2n (s, p
c
t) (16)

�D
e↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)
1X

n=1

(�1)n�1�2n(s, b; p
c
t) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (22)

�n di↵(s, b; pct) =
1

n!
�diff (s, b; pct)

n exp {��2(s, b; p
c
t)} (23)

�diff (s, b; pct) =
�
1� exp

�
��diff (s, b; pct)

 �
exp {��2(s, b; p

c
t)} (24)

�(s, b) = 1� exp [��h(s, b; p
c
t)� �s(s, b; p

c
t) + · · · ] (25)

�h(s, b; p
c
t) (26)

d�

dqT
(27)

qT (28)

q2 ⇠ Q2 � ⇤2
QCD (29)

qT ⇠ ⇤QCD (30)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

2

p
s = 1.8 TeV / 1.97 TeV (13)

�D
e↵ = 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c
t) = �inc

2n (s, p
c
t) (16)

�D
e↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)
1X

n=1

(�1)n�1�2n(s, b; p
c
t) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (22)

�n di↵(s, b; pct) =
1

n!
�diff (s, b; pct)

n exp {��2(s, b; p
c
t)} (23)

�diff (s, b; pct) =
�
1� exp

�
��diff (s, b; pct)

 �
exp {��2(s, b; p

c
t)} (24)

�(s, b) = 1� exp [��h(s, b; p
c
t)� �s(s, b; p

c
t) + · · · ] (25)

�h(s, b; p
c
t) (26)

d�

dqT
(27)

qT (28)

q2 ⇠ Q2 � ⇤2
QCD (29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ qT ⌧ Q (31)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

2

p
s = 1.8 TeV / 1.97 TeV (13)

�D
e↵ = 11mb (14)

p
s = 7 TeV (15)

Z
d2b�2n(s, b; p

c
t) = �inc

2n (s, p
c
t) (16)

�D
e↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)
1X

n=1

(�1)n�1�2n(s, b; p
c
t) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; p
c
t)} (22)

�n di↵(s, b; pct) =
1

n!
�diff (s, b; pct)

n exp {��2(s, b; p
c
t)} (23)

�diff (s, b; pct) =
�
1� exp

�
��diff (s, b; pct)

 �
exp {��2(s, b; p

c
t)} (24)

�(s, b) = 1� exp [��h(s, b; p
c
t)� �s(s, b; p

c
t) + · · · ] (25)

�h(s, b; p
c
t) (26)

d�

dq2T
(27)

qT (28)

q2 ⇠ Q2 � ⇤2
QCD (29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ qT ⌧ Q (31)

qT ⌧ Q (32)

qT ⇠ Q (33)

38

g(x1) = b g(x0) = b+ a(x0 � x1) (617)

g(x1) = f(x1) = f1 , g(x0) = f(x0) = f0 g(x2) = 0 (618)

x2 = x1 �
x1 � x0

f1 � f0
f1 (619)

Q (GeV) qT = 0, z = .25 qT = 2GeV, z = .25 xBj W (620)

W 2

SIDIS
= (P + q � PK)

2
(621)

xN/xBj zN/z (622)

R1 ⌘ PB · kf
PB · ki

m
2
/Q

2!0

= e��y
(623)

z = .25, ⇣,= .3, ⇠ = .2, m = m⇡ (624)

qT = 0.3 GeV qT = 2.0 GeV (625)

k = kf � q (626)

R2 =

�����(1� ẑN)� ẑN
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Large and Small Transverse Momentum



Why Large Transverse Momentum?

• Example: Shapes of TMD distributions:
– Sea versus valence? 
– Different flavors?

Different tails can produce 
very different 𝑘#0

𝑘#

𝑁𝑃
𝑇𝑀𝐷
𝑃𝐷𝐹



Why Large Transverse Momentum?

• Interpretation of integrals

• In generalized parton model: 

M𝑑0𝐤#𝑓(𝑥, 𝑘#) = 𝑓 𝑥 , M𝑑0𝐤#
𝑘#0

2𝑀0 𝑓.R(𝑥, 𝑘#) = 𝑓.R
(.) 𝑥 , ⋮

𝑑𝜎
𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞#

= 𝐻 𝑄 𝑓 𝑥, 𝑘.# ⊗ 𝑑 𝑧, 𝑧 𝑘0# + 𝑌 𝑥, 𝑧, 𝑞# + P. S. C.

= 𝐻 𝑄 M𝑑0𝐤.# M𝑑0𝐤0# 𝑓 𝑥, 𝑘.# 𝑑(𝑧, 𝑘0#)𝛿 0 (𝐤0# − 𝐤.# − 𝐪#)

Assume all contributions to transverse momentum dependence are intrinsic



Why Large Transverse Momentum?

• Integrated cross section in generalized parton
model

• Full integral

M𝑑0𝒒#
𝑑𝜎

𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞#
= 𝐻 𝑄 M𝑑0𝐤.# 𝑓 𝑥, 𝑘.# M𝑑0𝐤0# 𝑑(𝑧, 𝑧 𝑘0#)

= 𝐻 𝑄 𝑓 𝑥 𝑑(𝑧)

M𝑑0𝒒#
𝑑𝜎

𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞#
= M𝑑0𝒒# 𝐻 𝑄 𝑓 𝑥, 𝑘.# ⊗ 𝑑 𝑧, 𝑧 𝑘0# + 𝑌 𝑥, 𝑧, 𝑞#

Cutoff dependence cancels between terms



Large Transverse Momentum
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• 𝑞# ≈ 𝑄 outside the region where TMD factorization is 
applicable

• Still needed for TMD pdf identification

• Exact Ο(𝜆0) cross section is easy to calculate

3

p

q

k
p

q k + q

p

q

k

(a) (b) (c)

FIG. 1: Contributions to DIS from Eq. (16) at O (↵ a�). Graph (a) is the handbag diagram that contributes at leading power

and small transverse momentum. Graphs (b) and (c) contribute at leading power to large kT (the Hermitian conjugate for (c)

is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).

where cWµ⌫
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terms are negligible, the structure functions have process-specific parts, F̂1,2, and pdfs,

ff 0/p, that are intrinsic to the target. The separation and identification of these pieces when m
2 ⌧ Q

2 is the
factorization we aim to illustrate in Secs. V–VI.

III. MASSIVE SCALAR YUKAWA THEORY

We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1/2 “quark” field  q with mass mq, and a zero charge scalar “diquark” or “gluon” state � with a mass
ms. The numerical value of � fixes the strength of this interaction. We will find it useful to use the notation
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16⇡2
, (17)

in analogy with similar notation, as = g
2
s/(16⇡

2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1

1 This was done in [1], so we do not discuss the details further here.
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FIG. 2: Example calculations of F1(x,Q) and F1,fact(x,Q) calculated in the Yukawa theory. The solid curves are the exact

calculation (the graphs in Fig. 1) and the dashed curves are the factorized calculation in Eq. (52). For the largest values of Q,

the distinction between the factorized and exact curves becomes invisible.

Dropping the O
�
m

2
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2
�
and O

�
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2
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�
in Eq. (51), we can define the factorized approximation to the O (a�):
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So

F
(1)
1 (x,Q) = F

(1)
1,fact(x,Q) +O

✓
m

2

Q2

◆
(53)

for any x away from elastic scattering, x = 1.
The validity of the factorization above, as an approximation with errors strongly suppressed by powers of m2

/Q
2,

is confirmed in direct comparisons between the exact calculation of F
(1)
1 (x,Q) and the approximate F

(1)
1,fact(x,Q)

calculated with Eq. (52). (By an exact calculation of F (1)
1 (x,Q), we mean an direct calculation of the graphs in

Fig. 1 with no approximations.) Fig. 2 shows numerical results for F
(1)
1 (x,Q) and F

(1)
1,fact(x,Q) as a function of x

for a range of Q and with mp = ms = .938 GeV and mq = .3 GeV. These numerical values are chosen to represent
typical hadronic mass scales and a typical bound state quark mass, and to get a transition to factorizable kinematics
at around Q = 1 GeV. Some features to note are the following: The exact results have a sharp kinematical upper
bound on x (see the blue curve for Q = 1 GeV) while the factorized expressions are real for all x < 1. The transition
to the region where factorization works tends to be slower at large x, due to the 1/(1 � x) factors in Eq. (52). The
large Q Q-dependence is logarithmic, and this can be seen in the weak variation between the curves for largest values
of Q.

The e↵ect of the factorization approximation is easier to visualize on a graph of the percent error itself, defined as

Percentage Error = 100%

����1�
F1,fact(x,Q)

F1(x,Q)

���� . (54)
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let us implement them anyway by choosing µ = Q
4 in Eq. (51):
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Looking inside the F̂1,q/f (x/⇠, 1; a�(Q)) expression hints at what happens in the QCD case: The powers of the coupling
coupling vanishes as Q � ⇤QCD while the coe�cients remain fixed (for fixed x), and a good fixed order perturbative
treatment of the partonic structure function is obtained. In an asymptotically free theory like QCD, this justifies
viewing partonic quarks and gluons as the relevant degrees of freedom for the short distance, partonic part of the
interaction.

In the pdf, Eq. (55) again hints at what happens. In ff/p(⇠;Q), the logarithm diverges as Q grows much larger
than intrinsic mass scales like �(⇠). So with the above choice for µ, despite the smallness of as(Q) (in the QCD
version), a truncated perturbative treatment is almost certainly not reasonable in the large Q limit. If one instead
tries a small scale like µ = �(⇠) to eliminate these large logarithms, then the as(µ) becomes large due to the strong
coupling of QCD at small scales. So renormalization group improvement does not appear to help in providing a reliable
perturbative treatment of the pdf. That should not be surprising given that the pdf deals with large scale structure
where QCD is non-perturbative. Fortunately, however, the factorization derivation tells exactly what f/p(⇠;Q) is
to arbitrary order in a�(Q) (it is Eq. (23)) and this justifies simply replacing the third line of Eq. (55) by a non-
perturbative calculation of Eq. (23) using specifically non-perturbative techniques. Alternatively, if the same Eq. (23)
appears in factorization theorems for multiple experimental observables, it can be extracted from one observable and
be used in calculations for another. This is what is meant by the common assertion that pdfs are universal.

Note that the last strategy for using factorization is complicated by the fact that the pdf is not completely universal
due to its dependence on µ, and the optimal value of µ is process specific. For example, say that the ff/p(⇠;Q1) above
is extracted from a measurement perform with Q1. The renormalization group improvement in QCD implies that we
use µ = Q1 in the factorization formula. However, say that we then wish to use the result to make a prediction for a
measurement at another value, say Q2. In the second of these experiments, renormalization group improvement again
prescribes µ = Q2. However, the two pdfs ff/p(⇠;Q1) and ff/p(⇠, Q2) will di↵er by terms with powers of ⇠ ln(Q2

2/Q
2
1),

and these terms can be non-negligible if Q1 and Q2 are very di↵erent. Fortunately, there is a renormalization group
equation for Eq. (23) that relates di↵erent values of µ via a perturbatively well-behaved kernel, and can be derived
by considering the properties of the renormalization factors like the Z in Eq. (23) under changes in µ. In QCD, this
results in the DGLAP evolution equation.

VIII. EXTENSION TO TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION

The above results provide an easy way to demonstrate some of the subtleties that can arise when extending
factorization beyond the collinear case. Let us see how the same steps can be used to describe the semi-inclusive cross
section:

proton(pµ) + �
⇤(qµ) �! quark(pµB) +X (56)

4 Generally, the proportionality between µ and Q can be di↵erent from 1, i.e. µ = CQ with C being a numerical constant. We have used
1 for simplicity.

Effect from integrating 𝑘# → ∞ cancels 
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di↵erential in the transverse momentum of the final state quark. Instead of Eq. (1), consider

E
0
p
0
B

d�

d3l0d3pB
= E

0
z

d�

d3l0d2kTdz
, (57)

where pB = k + q and

z ⌘ p · pB
p · q (58)

is the usual kinematical z-variables of SIDIS. The basic steps in Secs. V–VI for factorizing the inclusive integrated
cross section continue to apply for the di↵erential SIDIS cross section in the Yukawa model, but with the integrals
over transverse momentum left undone. In this form, it is a version of transverse momentum dependent (TMD)
factorization, although with a trivial fragmentation function (see below).

To identify the usual TMD-factorization structure, note that the kT-di↵erential structure function in Eq. (37) can
be reexpressed in the following specific form

F (1)
1 (x, kT, Q) =

Z
dz

z
F

W
1 (x, z,kT, Q) + F

Y
1 (x, z,kT, Q) +O

�
m

2
/Q

2
�
. (59)

Now we will isolate and discuss each term in Eq. (59) separately and in detail. The second term in Eq. (59) is the
second term in Eq. (37) and it can be evaluated explicitly by subtracting Eq. (46) from (the integrand of) Eq. (45).
It accounts for the very large transverse momentum, highly o↵-shell (k2 ⇠ Q

2), contribution to the cross section.
Transverse momentum dependence in this region is a property of the specific SIDIS subprocess, not an internal
intrinsic property of the incoming or outgoing particles. One way to see this is from the fact that, at large kT, the
x, z, and kT dependence does not factorize when non-trivial fragmentation is included. Note, for example, the lowest
order calculation of SIDIS in QCD for large transverse momentum in Eqs.(B2-B4) of [3] and how the x, z and Q

dependence does not separate into independent terms. In the integral over kT to get collinear factorization, the
second term in Eq. (59) contributes to a higher order correction to the hard partonic F̂1,q/f (x/⇠, µ/Q; a�(µ)) – the
second term on the second line of Eq. (51). (That the transverse momentum is large means it is ideal for treatment
within perturbative calculations in the QCD version where asymptotic freedom can be exploited, particularly in the
calculation of the kT dependence itself.)

By contrast, the first term in Eq. (59) involves low, non-perturbative kT behavior. However, it can be understood in
terms of transverse momentum dependent (TMD) parton distribution and fragmentation functions. It can be written
as

F
W
1 (x, z,kT, Q) = F̂

W
1

Z
d2k1Td

2k2T�
(2)(k1T + kT � k2T)f(x,k1T;µ)d(z, zk2T;µ) , (60)
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2
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is a zeroth order hard partonic F1 and
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q + x(x� 1)m2

p

⇤2 , (62)

d(z, zk2T;µ) = �(1� z)�(2)(zk2T) , (63)

follow exactly from well-known operator definitions for TMD pdfs and TMD ↵s at O
�
a
1
�

�
and O

�
a
0
�

�
respectively.

Substituting Eq. (62) and Eq. (63) into Eq. (60) and integrating over z in Eq. (59) confirms that Eq. (60) reproduces
Eq. (39). Equation (60) has the following very nice classical probabilistic interpretation: The complete F

W
1 is the

probability density f(x,k1T;µ) to find a quark with longitudinal momentum fraction x and transverse moment
k1T inside the proton target, times the probability density d(z, zk2T;µ) that an outgoing quark carries momentum
fraction z and transverse momentum k2T relative to a final quark, times a parton sub-scattering structure function
F̂

W
1 , integrated over all undetermined momentum fractions.
The correct TMD pdf definition is the obvious generalization of the collinear pdf in Eq. (22) to the TMD case, just

with a Fourier transform over transverse as well as collinear components:

ff/h(⇠,kT) =

Z
dw�d2wT

(2⇡)3
e
�i⇠P+w�+ikT·wT hP |  ̄f (0, w

�
,wT)

�
+

2
 f (0, 0,0T) |P i . (64)
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W
1 is the

probability density f(x,k1T;µ) to find a quark with longitudinal momentum fraction x and transverse moment
k1T inside the proton target, times the probability density d(z, zk2T;µ) that an outgoing quark carries momentum
fraction z and transverse momentum k2T relative to a final quark, times a parton sub-scattering structure function
F̂

W
1 , integrated over all undetermined momentum fractions.
The correct TMD pdf definition is the obvious generalization of the collinear pdf in Eq. (22) to the TMD case, just
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FIG. 4: The solid blue curve is a repeat of the x = .3 curve in Fig. 3, while the red dashed curve is the percent error in the

classical probabilistic model (also called the TMD parton model) in Eq. (66). See Eq. (70).

The GPM as represented by Eq. (65) to Eq. (68) is obtained within the Yukawa toy theory simply by dropping the
Y -term in Eq. (59). If it is a good approximation, then it should show suppression in the large Q limit similar to
what is seen in Fig. 3 but with

Percentage Error = 100%

�����1�
F

Eq. (65)
1 (x,Q)

F1(x,Q)

����� (70)

instead of Eq. (54). Taking x = .3 as typical for the valence region, we show Eq. (54) and Eq. (70) in Fig. 4 using the
same mp = ms = .938 GeV and mq = .3 GeV as in Fig. 2 and Fig. 3. As expected, the classical probabilistic model
is significantly less accurate than the fully factorized calculation. More importantly, Eq. (70) contains errors that
remain unsuppressed as Q increases, so the problem of the larger error in Eq. (65) is not mitigated by going to larger
Q. In QCD there is also no power suppression, but only the very weak logarithmic suppression from the decreasing
size of ↵s.

Despite the above, the assumption that TMD-factorized quantities reduce to collinear factorization upon integration
over transverse momentum (Eq. (65)) is very widespread in the literature on TMD functions, to the point that it
is often treated as a pseudo-theorem. It is sometimes implied that e↵ective relations analogous Eqs. (67)–(68) can
be recovered through a carefully chosen regularization program. The reason this is not possible in general, as the
above discussion is intended to make clear, is that the divergences in the kT-integrals are from regions beyond of kT
where kT-dependence factorizes into a TMD pdf, a hard part, and a TMD ↵, and this needs to be incorporated into
any cuto↵ procedure the recovers the full collinear factorization cross section. For example, if a cuto↵ regulator in
Eq. (65) is to be applied in such a way as to eliminate the need for a Y -term, then it must be cuto↵ with intertwined
x, z, and Q dependence. Then, however, Eq. (65) would not factorize (the µc in Eq. (69) would have z-dependence,
for example). The combination of both the W and Y terms on the right side of Eq. (60) is not divergent at all when
integrated over kT, and the integral directly reproduces exactly the collinear factorization result in Eq. (51), as can
easily be checked in the Yukawa example. The divergent behavior at kT ! 1 cancels between the two terms, showing
that the restoration of regulator independence requires physics from beyond what is TMD-factorizable. Work is still
need to determine if and how these corrections the di↵erence between collinear and integrated TMD functions can be
incorporated through perturbatively calculatable corrections.
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Momentum

• Semi-inclusive DIS (JLab, EIC,…)

• Drell-Yan 

• Dihadron production in e+e- annihilation 
(Belle) 



SIDIS
• NLO study near the valence region.

the curves in Fig. 3 are reproduced.) The data are from
recent COMPASS measurements for charged hadron pro-
duction [30]. Neither leading order nor next-to-leading
order calculations give reasonable agreement with the
measurements, even for moderate x, z, and qT > Q, as
both systematically undershoot the data, most significantly
at the more moderate values of x close to the valence region.
At smaller x, the disagreement lessens, as might be expected
given the trend in Fig. 3. To highlight the valence region
(x ≥ 0.1) at the larger values ofQ, we have plotted the ratio
between data and theory in Fig. 5 for three particular
kinematic bins from Fig. 4. Even including the Oðα2sÞ
correction, the deviation is typically well above a factor of 2,
even for qT significantly larger than Q. In this context, it is
also worth considering Fig. 8 of Ref. [25], which is for
kinematics similar to those in Fig. 3 but for charged hadrons
measured at ZEUS [31]. The next-to-leading order K factor
is ≳1.5 for large transverse momentum. At least one other
set of SIDIS data at somewhat different kinematics exhibits
the same trend. This is the set of HERMESmeasurements of
πþ multiplicities [32] shown in Fig. 6. Note that the
kinematics very much correspond to the valence region
for the target. Figure 7 shows that the failure to match the
data is even more pronounced than in the COMPASS case.
Even for Q > 3 GeV and qT > Q, the difference is nearly
an order of magnitude.

IV. DISCUSSION

We have argued that there is tension between existing
fixed order pQCD calculations and at least two sets of large
transverse momentum measurements where those calcu-
lations should be reasonably accurate and that this disagree-
ment is too large to be attributable to qT being too small.
Thus, it appears to us to be a genuine mystery that needs

attention, especially for TMD phenomenology. The TMD
formalism relies on approximations that apply only in the
qT=Q → 0 limit, so it is critical to have an alternative
approach to describe the transition to very large transverse
momentum. If standard fixed order collinear pQCD is not
adequate for this, then something new is needed.
It is worth pointing out that one encounters similar

problems in Drell-Yan scattering, where a lowest order
calculation with current PDF sets is easily found to
undershoot the lowest available Q data by very large
factors. It is less clear how to interpret the disagreement
here, however, since most of the existing data for lower Q
regions are close to the threshold region and including
threshold resummation introduces extra subtleties.
The observations of this article have focused on unpo-

larized cross sections, but the implications extend to spin
and azimuthally dependent cross sections, since the key
issue is the relevance of different types of transverse
momentum dependence.
There are a number of possible resolutions that deserve

further investigation. An interesting one is that the hadroni-
zation mechanism is different in high-transverse-momentum
SIDIS from the usual picture in terms of universal FFs.
Models used in Monte Carlo event generators might be a
source of ideas regarding this possibility. In the context of this
possibility, it is noteworthy that much of the data for SIDIS
transverse momentum dependence is describable in a
Gaussian model of TMDs [35,36]. In pQCD, there are also
arguments that certain higher twist correlation functions
actually dominate over leading twist functions. In this picture,
the qq̄ pair that ultimately forms the final state is directly
involved in the hard part [32,37].
It is possible that threshold effects are important [38,39].

If that is the case, then there are serious implications for
TMD studies, because additional nonperturbative effects

FIG. 6. Calculation analogous to Fig. 4 but for πþ production measurements from Ref. [32].
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We examine tests of quantum chromodynamics in the production of lepton pairs in had-
ronic collisions. We emphasize the need for detailed experimental studies of the trans-
verse spectra of lepton pairs. As a further test, we calculate the production of real pho-
tons at high transverse momentum. y/w ratios at the 10~/p level are predicted for pr —-4—6
GeV, with (pp-yX) =(pp- AX) at pz=10 GeV.

The observed" dependence of the average
transverse momentum of lepton pairs produced
in pp collisions on the mass of the pair has been
recently heralded as a success of quantum chro-
modynamics (QCD). ' ' In QCD the transverse
momentum of virtual photons is basically' gen-
erated (in lowest order of the quark-gluon cou-
pling constant) through the two-body kinematics
of quark-antiquark annihilation into a photon-
gluon pair [Fig. 1(b)] or by the Compton scatter-
ing of quarks and gluons [Fig. 1(c)]. This has to
be contrasted with the leading Drell- Yan diagram

(a)

(b)

of Fig. 1(a) where a quark pair with pr=0 yields
a virtual photon with no transverse motion. The
computation of the diagrams in Fig. 1 is straight-
forward. After convoluting them with scaling
quark, antiquark, and gluon structure functions'
we obtain' the transverse-momentum distribution
of lepton pairs shown in Figs. 2 and 3, Our proce-
dure' predicts normalization as well as the shape
of the pr distribution, and therefore the agree-
ment with the data for large values of pr is a
definite success of the theory and a detailed ex-
perimental study of the large-pr behavior for dif-
ferent values of m constitutes the most direct
and meaningful test of the theory. Notice the
dominance of the quark-gluon Compton diagrams
at large pr (Fig. 3). The high-transverse-mo-
mentum lepton-pair spectrum is a direct mani-
festation of gluon dynamics. Contrary to calcu-
lations of (pr), calculations of do/dm dpr' are
not plagued by (i) the technical problem of how to
control the divergence of the diagrams in Figs.

10

(c)

m~ large, p =0l T

Io

C3

Cl

10
II
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10b

FIG. 1. (a) Drell-Yan diagram for hadroproduction
of massive lepton pair. (b), (c) Gluon corrections to
the Drell-Yan diagram of (a) in lowest order of the
quark-gluon coupling constant (vertex corrections not
shown). (d) Schematic representation of the transition
from virtual to real photon secondaries. Solid, wiggly,
and curly lines represent, respectively, quarks, pho-
tons, and gluons.

p (Gev)

FIG. 2. The transverse momentum spectrum of lep-
ton pairs produced in pp collisions at y =0, at v's =27.4
GeV. The curves show the @CD calculation; the data
are from Ref. 2.

1117

FIG. 1. Figure 2 of Ref.[7] showing the µ
+

µ
� cross section di↵erential in the total transverse momentum of the pair at y = 0.

The solid curves are O (↵s) predictions using the PDFs listed in Ref. [8]. The scale m is the invariant mass of the µ
+

µ
� pair

and pT is its transverse momentum in the center-of-mass system. (Note that it corresponds to our qT and m corresponds to
our Q.) (These exact data appear to be unpublished.)

for moderate x, moderate z, Q of a few GeVs, and qT & Q, existing data are poorly described by both leading order
or next-to-leading order calculations. In Sec. IV, we comment on our observations.

II. FACTORIZATION AND REGIONS OF PARTONIC KINEMATICS

Our focus will be on SIDIS because this is the process currently mostly closely connected with partonic structure
studies at moderate Q.

We will express quantities mainly in terms of the conventional kinematical variables z ⌘ PH · P/(P · q) and
x ⌘ Q

2
/2P · q. PH,T is the Breit frame transverse momentum of the produced hadron, and P and q are the four-

momenta of the incoming target hadron and the virtual photon respectively. We assume that x and 1/Q are small
enough that both the proton, final state hadron, and lepton masses can be dropped in phase space factors. As
mentioned in the introduction, it is useful to express transverse momentum in terms of

qT = �PH,T

z
. (1)

In a frame where the incoming and outgoing hadrons are back-to-back, qT is the transverse momentum of the virtual
photon.

The factorization theorem that relates the hadronic and partonic di↵erential cross sections in SIDIS at large PH,T

is
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The 1/⇠ is from the partonic flux factor, and the 1/⇣
2 is from the conversion between k1 and PH . The indices i

and j denote, respectively, the flavors of the initial parton in the proton and of the outgoing fragmenting parton.
The incoming and outgoing parton momenta p and k1 satisfy p = ⇠P and k1 = PH/⇣. (Indices i and j for incoming
and outgoing partons pi and k1,j will not be shown explicitly on the momenta but are understood). fi/P (⇠; µ) and
dH/j(⇣; µ) are the collinear parton distribution and fragmentation functions respectively, with a renormalization group
scale µ. It is also useful to define partonic variables
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- Halzen & Scott, Phys. 
Rev. Lett. 40, 1117 (1978)
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We examine tests of quantum chromodynamics in the production of lepton pairs in had-
ronic collisions. We emphasize the need for detailed experimental studies of the trans-
verse spectra of lepton pairs. As a further test, we calculate the production of real pho-
tons at high transverse momentum. y/w ratios at the 10~/p level are predicted for pr —-4—6
GeV, with (pp-yX) =(pp- AX) at pz=10 GeV.

The observed" dependence of the average
transverse momentum of lepton pairs produced
in pp collisions on the mass of the pair has been
recently heralded as a success of quantum chro-
modynamics (QCD). ' ' In QCD the transverse
momentum of virtual photons is basically' gen-
erated (in lowest order of the quark-gluon cou-
pling constant) through the two-body kinematics
of quark-antiquark annihilation into a photon-
gluon pair [Fig. 1(b)] or by the Compton scatter-
ing of quarks and gluons [Fig. 1(c)]. This has to
be contrasted with the leading Drell- Yan diagram

(a)

(b)

of Fig. 1(a) where a quark pair with pr=0 yields
a virtual photon with no transverse motion. The
computation of the diagrams in Fig. 1 is straight-
forward. After convoluting them with scaling
quark, antiquark, and gluon structure functions'
we obtain' the transverse-momentum distribution
of lepton pairs shown in Figs. 2 and 3, Our proce-
dure' predicts normalization as well as the shape
of the pr distribution, and therefore the agree-
ment with the data for large values of pr is a
definite success of the theory and a detailed ex-
perimental study of the large-pr behavior for dif-
ferent values of m constitutes the most direct
and meaningful test of the theory. Notice the
dominance of the quark-gluon Compton diagrams
at large pr (Fig. 3). The high-transverse-mo-
mentum lepton-pair spectrum is a direct mani-
festation of gluon dynamics. Contrary to calcu-
lations of (pr), calculations of do/dm dpr' are
not plagued by (i) the technical problem of how to
control the divergence of the diagrams in Figs.

10

(c)

m~ large, p =0l T

Io
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Cl
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FIG. 1. (a) Drell-Yan diagram for hadroproduction
of massive lepton pair. (b), (c) Gluon corrections to
the Drell-Yan diagram of (a) in lowest order of the
quark-gluon coupling constant (vertex corrections not
shown). (d) Schematic representation of the transition
from virtual to real photon secondaries. Solid, wiggly,
and curly lines represent, respectively, quarks, pho-
tons, and gluons.

p (Gev)

FIG. 2. The transverse momentum spectrum of lep-
ton pairs produced in pp collisions at y =0, at v's =27.4
GeV. The curves show the @CD calculation; the data
are from Ref. 2.

1117

FIG. 1. Figure 2 of Ref.[7] showing the µ
+

µ
� cross section di↵erential in the total transverse momentum of the pair at y = 0.

The solid curves are O (↵s) predictions using the PDFs listed in Ref. [8]. The scale m is the invariant mass of the µ
+

µ
� pair

and pT is its transverse momentum in the center-of-mass system. (Note that it corresponds to our qT and m corresponds to
our Q.) (These exact data appear to be unpublished.)

for moderate x, moderate z, Q of a few GeVs, and qT & Q, existing data are poorly described by both leading order
or next-to-leading order calculations. In Sec. IV, we comment on our observations.

II. FACTORIZATION AND REGIONS OF PARTONIC KINEMATICS

Our focus will be on SIDIS because this is the process currently mostly closely connected with partonic structure
studies at moderate Q.

We will express quantities mainly in terms of the conventional kinematical variables z ⌘ PH · P/(P · q) and
x ⌘ Q

2
/2P · q. PH,T is the Breit frame transverse momentum of the produced hadron, and P and q are the four-

momenta of the incoming target hadron and the virtual photon respectively. We assume that x and 1/Q are small
enough that both the proton, final state hadron, and lepton masses can be dropped in phase space factors. As
mentioned in the introduction, it is useful to express transverse momentum in terms of

qT = �PH,T

z
. (1)

In a frame where the incoming and outgoing hadrons are back-to-back, qT is the transverse momentum of the virtual
photon.

The factorization theorem that relates the hadronic and partonic di↵erential cross sections in SIDIS at large PH,T

is
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The 1/⇠ is from the partonic flux factor, and the 1/⇣
2 is from the conversion between k1 and PH . The indices i

and j denote, respectively, the flavors of the initial parton in the proton and of the outgoing fragmenting parton.
The incoming and outgoing parton momenta p and k1 satisfy p = ⇠P and k1 = PH/⇣. (Indices i and j for incoming
and outgoing partons pi and k1,j will not be shown explicitly on the momenta but are understood). fi/P (⇠; µ) and
dH/j(⇣; µ) are the collinear parton distribution and fragmentation functions respectively, with a renormalization group
scale µ. It is also useful to define partonic variables
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Corrected data
+ modern pdf set

Data from A. S. Ito et al., 
Phys. Rev. D23, 604 (1981)
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• Similar trend

A. E866

The E866/NuSea experiment [40] was a fixed-target
Drell-Yan experiment designed to measure the internal
structure of the nucleon, in particular the asymmetry of
down and up antiquarks in the sea, using dimuon events
originating from the collision of an 800-GeV proton beam
with hydrogen and deuterium targets (

ffiffiffi
s

p
¼ 38.8 GeV).

The measurement of the qT distribution of the muon pair is
presented in [41], a Fermilab Ph.D. thesis, and results are
given in terms of the differential cross section:

Ed3σ
d3q

≡ 2E
π

ffiffiffi
s

p dσ
dxF dq2T

¼ dσ
πdydq2T

: ð6Þ

Data are reported for different bins in xF ¼ 2pL=
ffiffiffi
s

p
,

ranging from −0.05 to 0.8, and are integrated over different
ranges in the invariant mass Q of the muon pair.
The comparison of our LO and NLO theoretical calcu-

lations with the experimental data is shown in Fig. 2 for the
bin 0.15 ≤ xF ≤ 0.35 and for the invariant mass range
4.2 GeV ≤ Q ≤ 5.2 GeV. The lower part of the plot shows
the ratio (data-theory)/theory. The error margins of the
data points correspond to the sum in quadrature of
statistical and systematic uncertainties, including also an
overall normalization uncertainty of 6.5%, as indicated in
[41]. Our theoretical predictions are computed at the
average Q value and xF of each bin (Q ¼ 4.7 GeV and
xF ¼ 0.25 in the case of Fig. 2). The left plot of
Fig. 2 shows the comparison of the experimental data with
NLO QCD ½Oðα2sÞ% predictions for central values of the

factorization and renormalization scales, μR ¼ μF ¼ Q.
The 90% confidence interval of the CT14 PDF set [39]
is included in the plot, but the corresponding variation is
barely visible.
An immediate observation from Fig. 2 is that the NLO

cross section is below the E866 data at high transverse
momenta, qT ≳ 3 GeV, even within the relatively large
uncertainties that the data have here. The NLO cross
section falls below the data even much more severely at
lower qT closer to the matching regime with TMD physics,
where the experimental uncertainties are much smaller.
This provides further evidence to our observation above
that this regime is presently not well understood theoreti-
cally. At the same time we emphasize that data from [41],
integrated over qT, are in good agreement with theoretical
predictions and are commonly used in global PDF fits
[42,43] [see, for instance, Sec. 5.1 of [41], where the only
relevant discrepancy concerns the lowest mass point (hQi≃
4.4 GeV) for 0.05 < xF < 0.25 (Figs. 5.1–5.5)]. This
suggests that TMD physics may be the main player for
the cross section up to relatively high qT , since the tail at very
large qT makes only a small contribution to the cross section.
The right plot of Fig. 2 shows the effect of varying the

renormalization and factorization scales independently in
the range Q=2 < μR, μF < 2Q, both for the LO QCD
½OðαsÞ% and the NLO QCD ½Oðα2sÞ% calculation. The fact
that, for qT ≳ 2.5 GeV, the NLO uncertainty band overlaps
with (and is eventually included in) the LO uncertainty
band provides some indication that perturbation theory is
well behaved for this process. On the other hand, we also

)
(

( ) ( )

)
(

FIG. 2. Transverse-momentum distribution of Drell-Yan dimuon pairs at
ffiffiffi
s

p
¼ 38.8 GeV in a selected invariant mass range and

Feynman-x range: experimental data from Fermilab E866 (hydrogen target) [41] compared to LO QCD and NLO QCD results. (Left
panels) NLO QCD ½Oðα2sÞ% calculation with central values of the scales μR ¼ μF ¼ Q ¼ 4.7 GeV, including a 90% confidence interval
from the CT14 PDF set [39]. (Right panels) LO QCD and NLO QCD theoretical uncertainty bands obtained by varying the
renormalization and factorization scales independently in the range Q=2 < μR, μF < 2Q.
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• If qT /Q is small, TMD fragmentation functions are 
needed.

• If qT /Q is large, there is recoil against a high 
momentum parton, and collinear factorization is 
needed:

5

dependent structure functions [6]. A convenient way to extract each structure function in Eq. (12) is to contract the
hadronic tensor with associated extraction tensors, Pµ⌫

L
and Pµ⌫

T
:

WT = Pµ⌫

T
Wµ⌫ , WL = Pµ⌫

L
Wµ⌫ , (13)

where

Pµ⌫

T
=

1

3
(�gµ⌫ � ZµZ⌫ + XµX⌫) , Pµ⌫

L
= ZµZ⌫ , (14)

with the Zµ and Xµ defined as in Eq. (3).
After changing variables to zA, zB , qT (see Appendix A for details),

d�AB

dzAdzBdqTd cos ✓d�
=

↵2
emzAzB

�
Q2 + q2T

�2
qT

32⇡2Q6

⇣
1 + cos2 ✓

⌘
WT + sin2 ✓ WL

�
, (15)

where ✓ and � are the polar and azimuthal angles of lepton l with respect to the Z and X directions in the photon
frame. For the polarization independent case considered in this paper, we integrate this over ✓ and � to get

d�AB

dzAdzBdqT
=

↵2
emzAzB

�
Q2 + q2T

�2
qT

12⇡Q6
[2WT + WL] . (16)

In the small transverse momentum limit, the process in Eq. (1) is the one that is most simply and directly related
to TMD ↵s through derivations such as Ref. [4] or more recently in Ref. [6, Chapt. 13]. Note that the totally inclusive
nature of the final state apart from the dihadron pair (with no specification of physical jets or properties like thrust)
and the measurement of the dihadron pair relative to an axis defined as above is very important for the derivation,
at least in its most basic form, and for the identification of the relevant correlation functions as standard TMD and
collinear ↵s. Measurements within a jet and relative to a thrust axis [69] of course contain important information in
relation to TMD ↵s, but the connection is less direct.

III. FACTORIZATION AT LARGE, MODERATE AND SMALL TRANSVERSE MOMENTUM

To calculate in perturbative QCD, the di↵erential cross section in Eq. (16) needs to be factorized into a hard part
and ↵s, and di↵erent types of factorization are appropriate depending on the particular kinematical regime. Assuming
zA,B are large enough to ensure that hadrons originate from separately fragmenting quarks, the three kinematical
regions of interest for exclusive scattering are determined by the transverse momentum qT. There are three major
regions: i.) qT ⇠ Q so that qT and Q are equally viable hard scales, ii.) m ⌧ qT ⌧ Q so that small qT approximations
are useful but qT is large enough that intrinsic non-perturbative e↵ects are negligible and logarithmic enhancement
are only a correction, iii.) qT . m and all aspects of a TMD-based treatment are needed, including non-perturbative
intrinsic transverse momentum (see also Sec. IV). We will briefly summarize the calculation of each of these below.

A. The fixed O (↵s) cross section at large transverse momentum

The scenario under consideration is one in which the two observed hadrons are produced at wide angle (so that
(pA + pB)2 ⇠ Q2), but are far from back-to-back (so that qT ⇠ Q). This requires at least one extra gluon emission
in the hard part. See Fig. 2 (A) for the general structure of Feynman graphs contributing at large qT and for our
momentum labeling conventions.

The basic statement of collinear factorization for the di↵erential cross section is

EAEB

d�AB

d3pAd3pB

=
X
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Z 1
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d⇣A

Z 1

zB

d⇣B

✓
EAEB

d�̂ij(ẑA, ẑB)

d3pAd3pB

◆
dHA/i(⇣A)dHB/j(⇣B) (17)

where the hat on the cross section in the integrand indicates that it is for the partonic subprocess l1+l2 ! kA+kB+X.
kA and kB will label the momenta of the partons that hadronize. The integrals are over the momentum fraction
variables ⇣A and ⇣B that relate the hadron and parton momenta in Fig. 2:

kA ⌘ pA/⇣A , kB ⌘ pB/⇣B . (18)

4

coordinates and neglecting masses the momenta in the hadron frame are:

qh =

 r
Q2 + q2

hT

2
,

r
Q2 + q2

hT

2
, qhT

!
, (4a)

pA,h = (p+
A,h

, 0,0) , (4b)

pB,h = (0, p�
B,h

,0) . (4c)

We have chosen to boost along the z-axis in the hadron frame until q+
h

= q�
h

. Useful Lorentz-invariant variables are

zA =
pA · pB
q · pB

=
p+
A,h

q+
h

, zB =
pA · pB
q · pA

=
p�
B,h

q�
h

. (5)

Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:

q2
hT =

2 pA · q pB · q
pA · pB

� Q2 = Q2 tan2
�
�✓/2

�
. (6)

As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:

qMax
T

2  Q2(1 � zA)(1 � zB)

1 � (1 � zA)(1 � zB)
. (7)

Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is

EAEB

d�AB

d3pAd3pB

=
↵2
em

8⇡3Q6
Lµ⌫W

µ⌫ (9)

where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
WT + ZµZ⌫WL . (12)

where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally
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FIG. 2: (a) The general diagrammatic structure contributing to Eq. (1) at large qT and at LO in ↵s. The outgoing partonic
lines are dotted to indicate that generally they can be of any type. In the region of interest for this paper, their momenta
deviate by wide angles from the back-to-back orientation for the dihadron pair. H represents the hard part of the interaction
and the CA,B,C are the collinear subgraphs [6]. (b) The O (↵s) partonic contribution to the square-modulus amplitude in the
factorization of (a).
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FIG. 3: Partonic channels that contribute at order ↵s. Detailed explanation in Sec. III A.

The i, j sum is over the di↵erent possible flavors of parton that can hadronize, i, j 2 {u, d, g, ū . . . }. The number
of active flavors depends on the scale. The dHA/i(⇣A) and dHB/j(⇣B) are the fragmentation functions for flavor i(j)
partons to hadronize into hadrons of flavor A (B). We use the standard abbreviations

ẑA = zA/⇣A , ẑB = zB/⇣B , (19)

which follow from Eq. (18) and the partonic analogue of the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC . After factorization, the hard part involves the square-modulus of the H
subgraph with massless, on-shell external partons. The graphs that contribute to this at lowest order are shown in
Fig. 2(b).

It is useful to define a partonic version of the hadronic tensor,
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ij

(0)|kA, kB , XihkA, kB , X|j⌫
ij

(0)|0i�(4)(q � kA � kB � pX) , (20)
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Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:
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As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:
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Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is
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where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =
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�gµ⌫ +
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where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally
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FIG. 2: (a) The general diagrammatic structure contributing to Eq. (1) at large qT and at LO in ↵s. The outgoing partonic
lines are dotted to indicate that generally they can be of any type. In the region of interest for this paper, their momenta
deviate by wide angles from the back-to-back orientation for the dihadron pair. H represents the hard part of the interaction
and the CA,B,C are the collinear subgraphs [6]. (b) The O (↵s) partonic contribution to the square-modulus amplitude in the
factorization of (a).

(A) (B) (C)

(D) (E) (F)

FIG. 3: Partonic channels that contribute at order ↵s. Detailed explanation in Sec. III A.

The i, j sum is over the di↵erent possible flavors of parton that can hadronize, i, j 2 {u, d, g, ū . . . }. The number
of active flavors depends on the scale. The dHA/i(⇣A) and dHB/j(⇣B) are the fragmentation functions for flavor i(j)
partons to hadronize into hadrons of flavor A (B). We use the standard abbreviations

ẑA = zA/⇣A , ẑB = zB/⇣B , (19)

which follow from Eq. (18) and the partonic analogue of the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC . After factorization, the hard part involves the square-modulus of the H
subgraph with massless, on-shell external partons. The graphs that contribute to this at lowest order are shown in
Fig. 2(b).

It is useful to define a partonic version of the hadronic tensor,

cWµ⌫

ij
⌘ 4⇡3
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h0|jµ
ij

(0)|kA, kB , XihkA, kB , X|j⌫
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Electron-Positron Annihilation

• Blue band: 
– from survey of 

non-perturbative fits

• Pink band:
– Large TM calculation, 

width from varying RG 
scale

• Green:
– Small 𝑞#/𝑄 → 0

asymptote

• No overlap in the transition 
region for smaller Q

𝑞#klm ≈ 𝑄



Summary

• Translation prescription between different 
versions of TMD factorization is established

• Can large transverse momentum be explained 
with standard collinear perturbation theory?

• Focus more on collinear factorization and 
understand the transition from small to large Q


