Factorization with TMD PDFs

Ted Rogers Jefferson Lab/Old Dominion University

- TMD basics
- Large Transverse Momentum

PDFLattice 2019, September 26th

Transverse Momentum Dependent Parton Densities

1) Needed to calculate transversely differential cross sections in pQCD

2) More detail about hadron structure than standard parton densities

Example: Drell-Yan

TMD Example: Drell-Yan

Example: SIDIS

Example: SIDIS

Catalogue of Regions

Catalogue of Regions

Transverse Momentum Dependent Evolution

• Collinear / DGLAP, Evolution with Scale:

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

Transverse Momentum Dependent Evolution

• Collinear / DGLAP, Evolution with Scale:

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

• TMD Case:

$$\frac{\partial \ln \tilde{F}(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T; \mu)$$

$$\frac{\mathrm{d}\tilde{K}(b_T;\mu)}{\mathrm{d}\ln\mu} = -\gamma_K(g(\mu))$$
$$\frac{\mathrm{d}\ln\tilde{F}(x,b_T;\mu,\zeta)}{\mathrm{d}\ln\mu} = \gamma(g(\mu);\zeta/\mu^2)$$

Transverse Momentum Dependent Evolution

 $\tilde{F}_{f/P}(x, \mathbf{b}_{\mathrm{T}}; Q, Q^2) =$

$$\sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_{*}; \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) f_{j/P}(\hat{x}, \mu_{b}) \times$$

$$\times \exp\left\{\ln \frac{Q}{\mu_{b}} \tilde{K}(b_{*}; \mu_{b}) + \int_{\mu_{b}}^{Q} \frac{d\mu'}{\mu'} \left[\gamma \left(g(\mu'); 1\right) - \ln \frac{Q}{\mu'} \gamma_{K}(g(\mu'))\right]\right\} \times$$

$$\times \exp\left\{-g_{f/P}(x, b_{T}; b_{\max}) - g_{K}(b_{T}; b_{\max}) \ln \frac{Q}{Q_{0}}\right\}$$

Finite coefficient

$$\tilde{F}_{f/P}(x, \mathbf{b}_{\mathrm{T}}; Q, Q^{2}) = \int_{y}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_{*}; \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) f_{j/P}(\hat{x}, \mu_{b}) \times \qquad \mu_{b} \equiv C_{1}/|\mathbf{b}_{*}(b_{T})$$

$$\times \exp\left\{\ln\frac{Q}{\mu_{b}}\tilde{K}(b_{*}; \mu_{b}) + \int_{\mu_{b}}^{Q} \frac{d\mu'}{\mu'} \left[\gamma \left(g(\mu'); 1\right) - \ln\frac{Q}{\mu'}\gamma_{K}(g(\mu'))\right]\right\} \times \\ \times \exp\left\{-g_{f/P}(x, b_{T}; b_{\max}) - g_{K}(b_{T}; b_{\max}) \ln\frac{Q}{Q_{0}}\right\}$$

13

 $\tilde{F}_{f/P}(x, \mathbf{b}_{\mathrm{T}}; Q, Q^2) =$

$$\sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_{*}; \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) f_{j/P}(\hat{x}, \mu_{b}) \times$$

$$\times \exp\left\{\ln\frac{Q}{\mu_{b}} \tilde{K}(b_{*}; \mu_{b}) + \int_{\mu_{b}}^{Q} \frac{d\mu'}{\mu'} \left[\gamma \left(g(\mu'); 1\right) - \ln\frac{Q}{\mu'} \gamma_{K}(g(\mu'))\right]\right\} \times$$

$$\times \exp\left\{-\frac{g_{f/P}(x, b_{T}; b_{\max}) - g_{K}(b_{T}; b_{\max})}{Nonperturbative parts, large b_{T}} \ln\frac{Q}{Q_{0}}\right\}$$

$$15$$

Organization of Factors in a Cross Section

• Example: CSS1

 $\sigma \stackrel{??}{\sim} \int \mathcal{H} \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} &= \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j,j_A,j_B} e_j^2 \int \frac{\mathrm{d}^2 \mathbf{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \\ &\times \int_{x_A}^1 \frac{\mathrm{d}\xi_A}{\xi_A} \underline{f_{j_A/A}(\xi_A;\mu_{b_*})} \, \tilde{C}_{j/j_A}^{\mathrm{CSS1,\,DY}} \left(\frac{x_A}{\xi_A}, b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underline{f_{j_B/B}(\xi_B;\mu_{b_*})} \, \tilde{C}_{\bar{j}/\bar{j}_B}^{\mathrm{CSS1,\,DY}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \exp\left\{-\int_{\mu_{b_*}^2}^{\mu_{e_*}^2} \frac{\mathrm{d}\mu'^2}{\mu'^2} \left[A_{\mathrm{CSS1}}(a_s(\mu');C_1)\ln\left(\frac{\mu_Q^2}{\mu'^2}\right) + B_{\mathrm{CSS1,\,DY}}(a_s(\mu');C_1,C_2)\right]\right\} \\ &\times \exp\left[-g_{j/A}^{\mathrm{CSS1}}(x_A,b_{\mathrm{T}};b_{\mathrm{max}}) - g_{\bar{j}/B}^{\mathrm{CSS1}}(x_B,b_{\mathrm{T}};b_{\mathrm{max}}) - g_K^{\mathrm{CSS1}}(b_{\mathrm{T}};b_{\mathrm{max}})\ln(Q^2/Q_0^2)\right] \\ &+ \text{suppressed corrections.} \end{split}$$

No explicit hard part $CSS1 = Collins-Soper-Sterman (\approx 1985)$

Organization of Factors in a Cross Section

• Example: CSS1

 $\sigma \stackrel{??}{\sim} \int \mathcal{H} \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s} \sum_{j,j_{A},j_{B}} e_{j}^{2} \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \\ &\times \int_{x_{A}}^{1} \frac{\mathrm{d}\xi_{A}}{\xi_{A}} \underline{f_{j_{A}/A}(\xi_{A};\mu_{b_{*}})} \tilde{C}_{j/j_{A}}^{\mathrm{CSS1, DY}} \left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},C_{2},a_{s}(\mu_{b_{*}})\right) \\ &\times \int_{x_{B}}^{1} \frac{\mathrm{d}\xi_{B}}{\xi_{B}} \underline{f_{j_{B}/B}(\xi_{B};\mu_{b_{*}})} \tilde{C}_{\bar{j}/\bar{j}_{B}}^{\mathrm{CSS1, DY}} \left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},C_{2},a_{s}(\mu_{b_{*}})\right) \\ &\times \exp\left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{d}\mu'^{2}}{\mu'^{2}} \left[\underline{A}_{\mathrm{CSS1}}(a_{s}(\mu');C_{1})\ln\left(\frac{\mu_{Q}^{2}}{\mu'^{2}}\right) + \underline{B}_{\mathrm{CSS1, DY}}(a_{s}(\mu');C_{1},C_{2})\right]\right\} \\ &\times \exp\left[-g_{j/A}^{\mathrm{CSS1}}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}}) - g_{\bar{j}/B}^{\mathrm{CSS1}}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}}) - g_{K}^{\mathrm{CSS1}}(b_{\mathrm{T}};b_{\mathrm{max}})\ln(Q^{2}/Q_{0}^{2})\right] \\ &+ \text{suppressed corrections.} \end{split}$$

No explicit hard part $CSS1 = Collins-Soper-Sterman (\approx 1985)$

Organization of Factors in a Cross Section

• Example: CSS1

 $\sigma \stackrel{??}{\sim} \int \mathcal{H} \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} &= \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j,j_A,j_B} e_j^2 \int \frac{\mathrm{d}^2 \mathbf{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \\ &\times \int_{x_A}^1 \frac{\mathrm{d}\xi_A}{\xi_A} \underline{f}_{j_A/A}(\xi_A;\mu_{b_*}) \ \tilde{C}_{j/j_A}^{\mathrm{CSS1,\,DY}} \left(\frac{x_A}{\xi_A}, b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underline{f}_{j_B/B}(\xi_B;\mu_{b_*}) \ \tilde{C}_{\overline{j}/j_B}^{\mathrm{CSS1,\,DY}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \exp\left\{-\int_{\mu_{b_*}^2}^{\mu_q^2} \frac{\mathrm{d}\mu'^2}{\mu'^2} \left[\underline{A}_{\mathrm{CSS1}}(a_s(\mu');C_1)\ln\left(\frac{\mu_Q^2}{\mu'^2}\right) + \underline{B}_{\mathrm{CSS1,\,DY}}(a_s(\mu');C_1,C_2)\right]\right\} \\ &\times \exp\left[-g_{j/A}^{\mathrm{CSS1}}(x_A,b_{\mathrm{T}};b_{\mathrm{max}}) - g_{\overline{j}/B}^{\mathrm{CSS1}}(x_B,b_{\mathrm{T}};b_{\mathrm{max}}) - g_{K}^{\mathrm{CSS1}}(b_{\mathrm{T}};b_{\mathrm{max}})\ln(Q^2/Q_0^2)\right] \\ &+ \mathrm{suppressed\ corrections.} \end{split}$$

No explicit hard part

• Example: CSS2

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} = \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j} H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_Q,a_s(\mu_Q)) \int \frac{\mathrm{d}^2\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \ e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \underbrace{\tilde{f}_{j/A}(x_A,b_{\mathrm{T}};Q^2,\mu_Q)}_{f_{\bar{j}/B}(x_B,b_{\mathrm{T}};Q^2,\mu_Q)} \underbrace{\tilde{f}_{\bar{j}/B}(x_B,b_{\mathrm{T}};Q^2,\mu_Q)}_{f_{\bar{j}/B}(x_B,b_{\mathrm{T}};Q^2,\mu_Q)}$$

+ suppressed corrections,

• Example: CSS2

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} = \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j} H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_Q,a_s(\mu_Q)) \int \frac{\mathrm{d}^2\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \ e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \ \underline{\tilde{f}_{j/A}(x_A,b_{\mathrm{T}};Q^2,\mu_Q)} \ \underline{\tilde{f}_{\bar{j}/B}(x_B,b_{\mathrm{T}};Q^2,\mu_Q)}$$

+ suppressed corrections,

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j,j_{A},j_{B}}\underline{H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))} \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}}e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \\ &\times e^{-g_{j/A}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{A}}^{1}\frac{\mathrm{d}\xi_{A}}{\xi_{A}}f_{j_{A}/A}(\xi_{A};\mu_{b_{*}}) \ \tilde{C}_{j/j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times e^{-g_{\bar{j}/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{B}}^{1}\frac{\mathrm{d}\xi_{B}}{\xi_{B}}f_{j_{B}/B}(\xi_{B};\mu_{b_{*}}) \ \tilde{C}_{\bar{j}/j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times \exp\left\{-g_{K}(b_{\mathrm{T}};b_{\mathrm{max}})\ln\frac{Q^{2}}{Q_{0}^{2}} + \tilde{K}(b_{*};\mu_{b_{*}})\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}}^{\mu_{Q}}\frac{\mathrm{d}\mu'}{\mu'}\left[2\gamma_{j}(a_{s}(\mu')) - \ln\frac{Q^{2}}{(\mu')^{2}}\gamma_{K}(a_{s}(\mu'))\right]\right\} \\ &+ \text{suppressed corrections.} \end{split}$$

• Example: CSS2

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j} \underline{H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))} \int \frac{\mathrm{d}^{2}b_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \underline{f}_{j/A}(x_{A},b_{\mathrm{T}};Q^{2},\mu_{Q})} \underline{f}_{\bar{j}/B}(x_{B},b_{\mathrm{T}};Q^{2},\mu_{Q})} \\ &+ \text{suppressed corrections,} \end{split}$$

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j,j_{A},j_{B}} \underline{H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))} \int \frac{\mathrm{d}^{2}b_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \\ &\times e^{-g_{j/A}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{A}}^{1} \frac{\mathrm{d}\xi_{A}}{\xi_{A}} \underline{f}_{j_{A}/A}(\xi_{A};\mu_{b_{*}})} \underbrace{\tilde{C}_{j/j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)}_{\times e^{-g_{j/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{B}}^{1} \frac{\mathrm{d}\xi_{B}}{\xi_{B}} \underline{f}_{j_{B}/B}(\xi_{B};\mu_{b_{*}})} \underbrace{\tilde{C}_{\bar{j}/j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)}_{\times \exp\left\{-g_{K}(b_{\mathrm{T}};b_{\mathrm{max}})\ln\frac{Q^{2}}{Q_{0}^{2}} + \tilde{K}(b_{*};\mu_{b_{*}})\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{\mathrm{d}\mu'}{\mu'}\left[2\gamma_{j}(a_{s}(\mu')) - \ln\frac{Q^{2}}{(\mu')^{2}}\gamma_{K}(a_{s}(\mu'))\right]\right\} \\ + \text{suppressed corrections.} \end{aligned}$$

• Example: CSS2

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j} \underline{H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))} \int \frac{\mathrm{d}^{2}b_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \underline{f}_{j/A}(x_{A},b_{\mathrm{T}};Q^{2},\mu_{Q})} \underline{f}_{\bar{j}/B}(x_{B},b_{\mathrm{T}};Q^{2},\mu_{Q})} \\ &+ \text{suppressed corrections,} \end{split}$$

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j,j_{A},j_{B}} \underline{H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))} \int \frac{\mathrm{d}^{2}\mathbf{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \\ &\times e^{-g_{j/A}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{A}}^{1} \frac{\mathrm{d}\xi_{A}}{\xi_{A}} \underline{f}_{j_{A}/A}(\xi_{A};\mu_{b_{*}})} \underbrace{\tilde{C}_{j/j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)}{e^{-g_{j/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{B}}^{1} \frac{\mathrm{d}\xi_{B}}{\xi_{B}} \underline{f}_{j_{B}/B}(\xi_{B};\mu_{b_{*}})} \underbrace{\tilde{C}_{\bar{j}/j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)}{e^{-g_{j/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_{B}}^{1} \frac{\mathrm{d}\xi_{B}}{\xi_{B}} \underline{f}_{j_{B}/B}(\xi_{B};\mu_{b_{*}})} \underbrace{\tilde{C}_{\bar{j}/j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right)}{e^{-g_{j/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})} \ln \frac{Q^{2}}{Q_{0}^{2}} + \underline{K}(b_{*};\mu_{b_{*}})} \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}^{\mu_{Q}} \frac{\mathrm{d}\mu'}{\mu'}\left[2\gamma_{\underline{j}(a_{s}(\mu')) - \ln \frac{Q^{2}}{(\mu')^{2}}\gamma_{\underline{K}(a_{s}(\mu'))}\right]}\right\} \\ + \text{ suppressed corrections.} \end{aligned}$$

• Example: CSS2

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j}H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))\int\frac{\mathrm{d}^{2}\mathbf{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \underline{\tilde{f}_{j/A}(x_{A},b_{\mathrm{T}};Q^{2},\mu_{Q})} \underline{\tilde{f}_{j/B}(x_{B},b_{\mathrm{T}};Q^{2},\mu_{Q})} \\ &+ \text{suppressed corrections,} \end{split}$$

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s}\sum_{j,j_{A},j_{B}}H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_{Q},a_{s}(\mu_{Q}))\int\frac{\mathrm{d}^{2}\mathbf{b}_{\mathrm{T}}}{(2\pi)^{2}}e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \\ &\times e^{-g_{j/A}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}})}\int_{x_{A}}\frac{\mathrm{d}\xi_{A}}{\xi_{A}}\underline{f}_{j_{A}/A}(\xi_{A};\mu_{b_{*}})} \widetilde{C}_{j/j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times e^{-g_{j/B}(x_{B},b_{\mathrm{T}};b_{\mathrm{max}})}\int_{x_{B}}^{1}\frac{\mathrm{d}\xi_{B}}{\xi_{B}}\underline{f}_{j_{B}/B}(\xi_{B};\mu_{b_{*}})} \widetilde{C}_{j/j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times \exp\left\{-g_{K}(b_{\mathrm{T}};b_{\mathrm{max}})\ln\frac{Q^{2}}{Q_{0}^{2}} + \underline{\tilde{K}}(b_{*};\mu_{b_{*}})\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}}^{\mu_{Q}}\frac{\mathrm{d}\mu'}{\mu'}\left[2\gamma_{\underline{j}}(a_{s}(\mu')) - \ln\frac{Q^{2}}{(\mu')^{2}}\gamma_{\underline{K}}(a_{s}(\mu'))\right]\right\} \end{aligned}$$

+ suppressed corrections.

Translation

Example

$$\tilde{C}_{j/k}^{\text{PDF}}\left(\frac{x}{\xi}, b_*; \mu_{b_*}^2, \mu_{b_*}, a_s(\mu_{b_*})\right) = \frac{\tilde{C}_{j/k}^{\text{CSS1, DY}}\left(\frac{x}{\xi}, b_*; \mu_{b_*}^2, \mu_{b_*}, C_2, a_s(\mu_{b_*})\right)}{\sqrt{(1/e_j^2)H_{j\bar{j}}^{\text{DY}}(\mu_{b_*}/C_2, \mu_{b_*}, a_s(\mu_{b_*})))}} \exp\left[\tilde{K}(b_*; \mu_{b_*})\ln C_2\right]$$
CSS2 (Collins, 2011)

- Translation also available for
 - Nonperturbative (g) functions
 - A, B
 - Other resummation formulations

TMD Factorization: Translation of Results

Translate different versions of TMD results: Collins, TCR (2017)

TMD Factorization: Translation of Results

Translate different versions of TMD results: Collins, TCR (2017)

$$\begin{aligned} \frac{d\sigma}{dQ^{2} dy dq_{T}^{2}} &= \frac{4\pi^{2} \alpha^{2}}{9Q^{2} s} \sum_{j,j_{A},j_{B}} H_{j\bar{j}}^{DY}(Q,\mu_{Q},a_{s}(\mu_{Q})) \int \frac{d^{2} b_{T}}{(2\pi)^{2}} e^{iq_{T} \cdot b_{T}} \\ &\times e^{-g_{j/A}(x_{A},b_{T};b_{max})} \int_{x_{A}}^{1} \frac{d\xi_{A}}{\xi_{A}} f_{j_{A}/A}(\xi_{A};\mu_{b_{*}}) \tilde{C}_{j/j_{A}}^{PDF}\left(\frac{x_{A}}{\xi_{A}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times e^{-g_{j/B}(x_{B},b_{T};b_{max})} \int_{x_{B}}^{1} \frac{d\xi_{B}}{\xi_{B}} f_{j_{B}/B}(\xi_{B};\mu_{b_{*}}) \tilde{C}_{j/j_{B}}^{PDF}\left(\frac{x_{B}}{\xi_{B}},b_{*};\mu_{b_{*}}^{2},\mu_{b_{*}},a_{s}(\mu_{b_{*}})\right) \\ &\times \exp\left(-g_{K}(b_{T};b_{max})\ln\frac{Q^{2}}{Q_{0}^{2}} + \tilde{K}(b_{*};\mu_{b_{*}})\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[2\gamma_{j}(a_{s}(\mu')) - \ln\frac{Q^{2}}{(\mu')^{2}}\gamma_{K}(a_{s}(\mu'))\right]\right\} \\ &+ \text{suppressed corrections.} \end{aligned}$$

$$Lattice Calculations, e.g.$$
Ji, Sun, Xiong, Yuan, PR91 (2015) Ebert. Stewart and Zhao. [HEP09(2019)037]

Open Problems

- How low can scales be?
- Description of large transverse momentum

What is the relevant description?

Large and Small Transverse Momentum

- TMD pdfs in physical processes
 - Small q_T /Q expansion
 - Need to separate small and large q_T/Q

• Works best if there is a region of overlap between large and small q_T /Q methods:

 $Y(x, z, q_T)$ = Large q_T/Q Approx. – Small and Large q_T/Q Approx.

Example: SIDIS

Example: SIDIS

Large and Small Transverse Momentum

Why Large Transverse Momentum?

• Example: Shapes of TMD distributions:

– Different flavors?

Why Large Transverse Momentum?

• Interpretation of integrals

$$\int d^2 \mathbf{k}_T f(x, k_T) = f(x), \quad \int d^2 \mathbf{k}_T \frac{k_T^2}{2M^2} f_{1\perp}(x, k_T) = f_{1\perp}^{(1)}(x), \quad \dots$$

• In generalized parton model:

 $\frac{d\sigma}{dx \, dz \, dQ \, dq_T} = H(Q)f(x, k_{1T}) \otimes d(z, z \, k_{2T}) + Y(x, z, q_T) + P S.C.$

$$= H(Q) \int d^2 \mathbf{k}_{1T} \int d^2 \mathbf{k}_{2T} f(x, k_{1T}) d(z, k_{2T}) \delta^{(2)}(\mathbf{k}_{2T} - \mathbf{k}_{1T} - \mathbf{q}_T)$$

Assume all contributions to transverse momentum dependence are intrinsic

Why Large Transverse Momentum?

 Integrated cross section in generalized parton model

$$\int d^2 \boldsymbol{q}_T \left(\frac{d\sigma}{dx \, dz \, dQ \, dq_T} \right) = H(Q) \left(\int d^2 \mathbf{k}_{1T} f(x, k_{1T}) \right) \left(\int d^2 \mathbf{k}_{2T} \, d(z, z \, k_{2T}) \right)$$
$$= H(Q) f(x) d(z)$$

• Full integral

$$\int d^2 \boldsymbol{q}_T \left(\frac{d\sigma}{dx \, dz \, dQ \, dq_T} \right) = \int d^2 \boldsymbol{q}_T \left(H(Q) f(x, k_{1T}) \otimes d(z, z \, k_{2T}) + Y(x, z, q_T) \right)$$

Cutoff dependence cancels between terms

Large Transverse Momentum

- $q_T \approx Q$ outside the region where TMD factorization is applicable
- Still needed for TMD pdf identification

 $\mathcal{L}_{\text{int}} = -\lambda \overline{\Psi}_N \psi_q \phi + \text{H.C.}$

• Exact $O(\lambda^2)$ cross section is easy to calculate

Example

Collinear Factorization

$$F_{1}(x,Q) = \sum_{f} \int_{x}^{1} \frac{d\xi}{\xi}$$

$$\times \frac{1}{2} \left\{ \delta\left(1 - \frac{x}{\xi}\right) \delta_{qf} + a_{\lambda}(\mu) \left(1 - \frac{x}{\xi}\right) \left[\ln\left(4\right) - \frac{\left(\frac{x}{\xi}\right)^{2} - 3\frac{x}{\xi} + \frac{3}{2}}{\left(1 - \frac{x}{\xi}\right)^{2}} - \ln\frac{4x\mu^{2}}{Q^{2}(\xi - x)} \right] \delta_{pf} \right\} \times$$

$$K = \frac{\delta\left(1 - \xi\right) \delta_{fp} + a_{\lambda}(\mu)(1 - \xi) \left[\frac{(m_{q} + \xi m_{p})^{2}}{\Delta(\xi)^{2}} + \ln\left(\frac{\mu^{2}}{\Delta(\xi)^{2}}\right) - 1 \right] \delta_{fq}}{f_{f/p}(\xi;\mu)}$$
Parton
Distribution
Effect from integrating $k_{T} \to \infty$ cancels

Example

• TMD Factorization

$$F_1^W(x, z, \boldsymbol{k}_{\rm T}, Q) = \hat{F}_1^W \int d^2 \boldsymbol{k}_{\rm 1T} d^2 \boldsymbol{k}_{\rm 2T} \delta^{(2)}(\boldsymbol{k}_{\rm 1T} + \boldsymbol{k}_{\rm T} - \boldsymbol{k}_{\rm 2T}) f(x, \boldsymbol{k}_{\rm 1T}; \mu) d(z, z \boldsymbol{k}_{\rm 2T}; \mu)$$

$$\hat{F}_1^W = \frac{1}{2}$$

$$f(x, \boldsymbol{k}_{1\mathrm{T}}; \mu) = \frac{a_\lambda(\mu)}{\pi} \frac{(1-x) \left[k_{\mathrm{T}}^2 + (m_q + xm_p)^2\right]}{\left[k_{\mathrm{T}}^2 + xm_s^2 + (1-x) m_q^2 + x(x-1)m_p^2\right]^2}$$

$$d(z, z\boldsymbol{k}_{2\mathrm{T}}; \mu) = \delta(1-z)\delta^{(2)}(z\boldsymbol{k}_{2\mathrm{T}})$$

Example

Accuracy
 Collinear Factorization

---- Integrated TMD factorization

Simplest Processes with Transverse Momentum

• Semi-inclusive DIS (JLab, EIC,...)

• Drell-Yan

 Dihadron production in e⁺e⁻ annihilation (Belle)

SIDIS

• NLO study near the valence region.

https://jeffersonlab.github.io/ BigTMD/_build/html/index.ht ml

B. Wang, J. O. Gonzalez-Hernandez, TR, N. Sato Phys. Rev. D 99, 094029

Drell-Yan: Old Results

- Halzen & Scott, Phys. Rev. Lett. 40, 1117 (1978)

Drell-Yan: Old Results

- Halzen & Scott, Phys. Rev. Lett. 40, 1117 (1978) Corrected data + modern pdf set Data from A. S. Ito et al., Phys. Rev. D23, 604 (1981)

5

Drell-Yan: New Results

Similar trend

Bacchetta et al., Phys.Rev. D100 (2019) no.1, 014018

Dihadron Production in e⁺e⁻ Annihilation

 If q_T/Q is small, TMD fragmentation functions are needed.

momentum parton, and collinear factorization is

If q_T/Q is large, there is recoil against a high

•

needed:

 $z_A = \frac{p_A \cdot p_B}{q \cdot p_B}$

 $\hat{z}_A = z_A / \zeta_A$

$$z_B = \frac{p_A \cdot p_B}{q \cdot p_A}$$
$$\hat{z}_B = z_B / \zeta_B$$

$$E_A E_B \frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}^3 \boldsymbol{p}_A \mathrm{d}^3 \boldsymbol{p}_B} = \sum_{i,j} \int_{z_A}^1 \mathrm{d}\zeta_A \int_{z_B}^1 \mathrm{d}\zeta_B \left(E_A E_B \frac{\mathrm{d}\hat{\sigma}_{ij}(\hat{z}_A, \hat{z}_B)}{\mathrm{d}^3 \boldsymbol{p}_A \mathrm{d}^3 \boldsymbol{p}_B} \right) d_{H_A/i}(\zeta_A) d_{H_B/j}(\zeta_B)$$

Dihadron Production in e⁺e⁻ Annihilation

• Validate with event generator

Electron-Positron Annihilation

- Blue band:
 - from survey of non-perturbative fits
- Pink band:
 - Large TM calculation, width from varying RG scale
- Green:
 - Small $q_T/Q \rightarrow 0$ asymptote
- No overlap in the transition region for smaller Q

Summary

• Translation prescription between different versions of TMD factorization is established

• Can large transverse momentum be explained with standard collinear perturbation theory?

 Focus more on collinear factorization and understand the transition from small to large Q