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Introduction

Feynman diagrams and amplitudes: main tools for quantitative
predictions for high energy processes.

Difficult to compute, an active field of research over the span of
many decades.

Very satisfying progress for the purposes of LHC phenomenology:
most processes at NLO, many processes at NNLO, few important

processes at N3LO.

Spectacular agreement of theory QCD predictions and
experimental measurements.

The LHC is a precision physics machine



Future precision

Vs = 14 TeV, 3000 fb™' per experiment
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* A projection of Higgs cross-
section measurements at the
end of the high-luminosity LHC
programme.

* Theoretical predictions for
Standard Model cross-sections
will be an important component
of the total uncertainty.

Total ATLAS and CMS

—— Statistical HL-LHC Projection
—— Experimental

—_— Theory Uncertainty [%]

Tot Stat Exp Th

1.6 0.7 08 1.2
3.1 18 13 21
5.7 33 24 4.0
42 26 1.3 31

43 13 1.8 37

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Expected relative uncertainty




A wish list...

POSSIBLE
PROCESSS Phenomenolog
CLASS Sl SlalLe y motivated
GOAL
z2=1 H,W,Z,WH,ZH N3LO N3LO
jet inclusive,
2—>2 dI.bOSOn, top- NNLO N3LO
pair, photon-jet,
73 ttH,diphton+jet,
WWV/ZZ/Z\WN+jet, NLO NNLO
top-pair+jet,...

Are we ready for such a leap?




Challenges

e One big challenge is the (In qq — QQ)
proliferation of Feynman
diagrams.

* The integrands are simple rational

functions of loop-momenta ~ lree 1

* But established integration ~ T-loop 10
methods for loop amplitudes """"""""""""""""""""
perform numerous costly ~ 2-loop 189
operations on the integrands T
before final integrations. ~ 3-loop | 134225

* These operations are
necessitated by the presence of
divergences

(Similar pattern for increasing
the number of external legs)



NEED TO THINK OF ALTERNATIVES

Powerful schemes which have lead to impressive breaktroughs.
But, | feel, that we have already achieved most of what is possible with them.




Alternative approach

Generate amplitudes in momentum
space.

Integrate them directly after
subtracting or deforming the
integration contour away from
singularities.

The theoretical foundation for this
program lies in the proofs of

factorization for perturbative QCD
(Collins, Soper, Sterman)

For wide-angles and high energy,
scattering amplitudes can be separated

into short-distance (hard functions) and I
long-distance factors (jet and soft Factorization in momentum-space

functions)




Basic idea

Amplitude G — [ [dk]j (k)

G = [dk] [j (k) — j approx(k)] Monte-Carlo Integration

JC
B F / Anal I
actorization / Analytic Integration
+ [dk]j (k) or combination with reak-radiation
approx ) ]
approximations

J —00




Subtraction of singularities

Feynman parameter space Momentum space

* |R/UV counterterms can be found
algoritnmically for arbitrary loops

* |R/UV counterterms have been
found only at one-loop
(Nagy, Soper)

» A sector-decomposition algorithm

can disgntangle overlapping « Contour deformations are known at
singularities one-loop and beyond for
(Binoth, Heinrich) Processes. (Nagy, Soper,; Becker,

Weinzierl), But not efficient!
e Contour deformations can be

produced algorithmically for * A promising field of research with
arbitrary loops space for new ideas (e.g. loop-tree-
(Nagy, Soper) duality by Catani, Rodrigo et al.)



Outline

Origin of singularities

General method of nested subtractions
Application to scalar integrals
Application to two-loop QCD amplitudes

Future prospects and possibilities.



Review of the origin of
singularities

p—/'%’_ﬂ
* | oop amplitudes contain the A R
probability amplitude for
propagation of particles in
between vertices of Feynman Ampl(A — B) = —=
graphs. E? — w?
* These are singular when w=/m?+ P2
particles are on-shell.
Do these singularities lead to . — 0O
divergent integrals? E2 — 2
E=tw




“Infinities” from classical
behaviour

J o | :J E... e ,
uas E2—w+1id i w \E—w+i6 E+w-—-id
* The poles lie inside the domain Moo

of integration for the energy of &

virtual particles.
« If we can deform the path of i)

integration away from the poles, PR >

then they lead to no singularities

* pbut the integral acquires both a
real and imaginary part.

w—>w—Ii0Wthédé— 0
12



“Infinities” from classical
behaviour

o0 hels o0 cee 1 1
J a0 , :J ... e ,
uas E2—w+1id i w \E—w+i6 E+w-—-id

~—

* The poles lie inside the domain il
of integration for the energy of %
virtual particles.

« |f we can deform the path of /\ o plON)

integration away from the poles, E >
then they lead to no singularities

DET oRMEP

* pbut the integral acquires both a PATH
real and imaginary part.

w—>w—Ii0Wthédé— 0

13




Soft massless particles

 Poles due to soft massless .

particles. i (E+id) (E —id)

e These singularities pinch the
integration path from both




Collinear singularities

=)

- { =
A second source of infinities due 3
to massless collinear particles. i
A singularity of one particle in ?q‘?

the lower half-plane lines up with
the singularity of a collinear
particle in the higher half-pane.

The singularities pinch the
integration path from both sides.

o R
We cannot deform the path, a \,_\ Re E

e fales
|
condition for a TRUE INFINITY! Crom Poericle A

15




Pinch singularities

* To know if a singularity develops, we need
to study the behaviour of the integral in the
vicinity of the pinch surface.

e \We can calculate a degree of divergence.

e Scale variables which are perpendicular to
the pinched surface with a small
parameter and calculate the scaling of the
integrand as the parameter is driven to
zero.

soft k* ~ 60, d*k ~ 6
Collinear k=xp+an+pp,, x~3&,a~4,p~ 51 d* ~ 82

Divergent: n <0

Integrand: d4kj(k) ~ 5”

Convergent: n > 0




Nested subtractions for an arbitrary
number of loops in physical space

Ozan Erdogan, George Sterman

e Singular regions are
iInterconnected. How can we
create systematically an
approximation of the loop R™WA™ = 4™ L 3 T (=)™,
integrals in all singular regions? NENy™] pEN

e QOrder the singular regions by
their “volume”

e Subtract an approximation of the
integrand in the smallest volume

 Then, proceed to the next
volume and repeat until there are
Nno more singularities to remove.




* Qrder the singular regions by

Nested subtractions

Ozan Erdogan, George Sterman

their “volume RM A — ) 4 Z H(—tp)V(n),

NeN[y(™] peN

Subtract an approximation of
the integrand in the smallest
volume

Then, proceed to the next
volume and repeat until there
are no more singularities to
remove.




Nested subtractions

Ozan Erdogan, George Sterman

Order the singular regions by their
“volume”

Subtract an approximation of the
integrand in the smallest volume

Then, proceed to the next volume
and repeat until there are no more
singularities to remove.

Method should work at all orders in
perturbation theory.

This structure gives rise to
factorisation into Jet, Soft and Hard
functions for scattering amplitudes.

RM A = )

Z H (—to)v™,

NeN[y(™] peN




An one-loop example

* One-loop massless box has
both soft and collinear
singularities

e A soft singularity occurs in a d'hy dik, _
A1A2A3A4 (—2]€2 . pl)k§(2k2 : pg)t

. . 0™
single point iIn momentum

space (smallest volume).
Needs to be subtracted first. A DR O(5572).
A Ay AsAy Ay Agsta (1 — 1)

e A collinear singularity occurs
IN an one-dimensional space
(larger volume). Needs to be
subtracted after the soft.




An one-loop example

e | et’s focus on the soft-
subtractions which come first.

e Need to construct an
in the soft limits.

e Options are not unique. Can
have significant differences in
their UV behaviour.

— —2p1 . kQ

—>A2, tS2IAZ'—>AZ',7;:1,2,3,

— 2po - ko, OR ts, : Ay — t.(Nagy Soper)

— 1.

4
d%ky  Npox
B =(1 — g te. | B = —
ORR < Sz) o /mé A1 A5 A5 A,

=1

A A
Npoy =1— =2 — =2
t S



An one-loop example

The subtracted integral is now
finite in all soft limits.

Observation: The “soft”
counterterms are easier to
compute than the original te, Box(s,t,¢) = tg, Box(s,t,e)
integral (triangle integrals)

ts, Box(s,t,€) =tg, Box(s,t,¢€)

The subtracted integral does
not have quadratic poles in
epsilon.

In fact, it does not have single
poles in epsilon either....




An one-loop example

Let’s consider a collinear limit

Observation: The “soft” counterterms are
easier to compute than the original
integral (triangle integrals)

The collinear limit approximation is
potentially UV divergent.

We introduce a UV counterterm to the
Collinear counterterm as well (Nagy,
Soper).

. d1i. ﬂ
In this example, the numerator of the /d ki | Neex @A B%klum] .

. . . d —
collinear counterterm vanishes. im2 | AiAsAsAy A 1Agsta (1 — 1)

..which explains why our soft-
subtractions sufficed to yield a finite
result. NBox| b= —21p1




Does the method work at two-loops?

A complicated web of interconnected divergences....






Nested subtractions at 2-
l00pPS

Order of subtractions:
- double-soft

- soft-collinear

- double-collinear

- single-soft

- single-collinear

Approximations in singular regions
do not need to be strict limits!

Good approximations should not
introduce ultraviolet divergences

Good approximations should be
easy to integrate exactly.




Example: two-loop
Cross-box

two-loop single single
limits soft collinear

2 1s (1c)
F)((b)ox F)((bo)w FXbo:c’

Fxp
ox
double double

-soft -collinear

A
+—2(A2+$—A13)

F )((2 b)oa: — N5 ) Ay Z Ay A6 2 Auser
Ay Ay Az Ay As AgAr (A () - () (B )

ﬁ_i_é) (Aﬁ ) (t—u A1A3

F(lc) _ ]. _ 1 ]. 1\75 _ J\%
Xboz ™ AlAQ BlBQ S(]. — ?[?1) A4A5A0A7 ki=—z1p1 A4A5A6A7_ .
1 Ns
ko=0

N5 1V5
{A,ASA.A} _ _{AASAA]_} - -
{ T = T ka0 A1A2A3 A4A5A6A7

1 1 N
N {A4A5 - B4BJ {A1A2A3A6A7L_W

_ 1 B 1 1
Ay A ByBs 5(1—353

s )
AgA7  BeBr] | AvAsAsAuAs |y o




Example: two-loop
Cross-box

d%ky d%k
Xboxﬁn = / d2 d5 FXbox — O(EO>'

VT2 QT2

2

P ) = [Gints) + i7G(9)] Yo () + Ent) + inEy)

Eg(y) = =87 Lis(y) + 8 Liz(y) log(1 — y)* — 28 log(y) Liz(y) log(1 — y) — 18 Lis(y) log(y)*

17 1
+44 Liz(y) log(1 —y) + 96 Liz(y) log(y) — 188 Lis(y) + 36 ™+ B log(1 —y)*

25 3 f
+7 log(y) log(1 —y) m* — = 7 log(l —y)* — 5 log(y)® 7* + log(y) log(1 — y)*

+44 512(y) log(1 — y) — 52.512(y) log(y) + 84 S13(y) + 88 Saa(y) — 44 5 log(1 — y)

1
—4 log(y) Gs — § log(y)* + log(y)® log(1 — y) — g log(y)? log(1 — y)?,

2




Complexity of counterterms at
two-loop

p‘l

In double-soft approximations:

Double-soft counterterms are integrals with
at most six massless propagators
(all known).



Complexity of counterterms at
two-loops

e Collinear counterterms for a Feynman
diagrams or a Feynman integral require
the convolution of a subgraph

e At two-loops, we have to integrate over
one-loop infrared-subtracted subgraphs

e |t can be done analytically, in principle...
it requires a good calculator of one-loop
integrals and a good dictionary for the
integration of polylogarithms

* it can also be done numerically, with little €
effort

* Collinear counterterms are much simpler
(no convolutions) for physical amplitudes

(exploiting QCD factorization) / { < vle—1) ) < y(e = 1) > Q}

1 ) v 13 . 5 N .
~51 log(y)" — 2 Lis(y)* + JT: 7 — Lis(y) log(y)? + 4 Lis(y) log(y)
5

—4 (3 log(y) — 5 7" Lia(y) — 8 Lis(y) + 8 Saa(y). (3.98)
)




Subtractions for QCD
amplitudes

with Rayan Haindl, George Sterman, Zhou Yang, Mao Zeng
This is work in its infancy...

From first principles, we expect that nested subtractions can
separate the short distance (finite part) of physical amplitudes from
the long distance (singularities) part.

Significant simplifications occur in comps

Singularities are at most logarithmic

Factorisation of all singular limits when physical sets of Feynman
diagrams are combined together

Hope Generic subtraction terms for all processes.



Application to amplitudes

* Consider the process for the
production of a heavy
colourless final-state from the
scattering of a massless quark-

antiquark pair. ?N\ o

* This encompasses a large set
of processes (multi Z,W, photon

production and combinations) / o I STHALE

* Easy to verify at one-loop that
a simple set of local
counterterms exists for all
these processes.




Application to amplitudes

e Per tree-diagram, there is one .
1-loop diagram with a soft P >
singularity.

o . o\'T
e The soft limit is (up to trivial >< x

factors), an one-loop scalar
iIntegral times a tree-diagram.




Application to amplitudes

e Per tree-diagram, there is one .
1-loop diagram with a soft P >
singularity.

o . o\'T
e The soft limit is (up to trivial >< x

factors), an one-loop scalar
iIntegral times a tree-diagram.




Application to amplitudes

O |- = - (- X)Q\
* Many graphs yield collinear

divergences.
WARD - TOeN TTT

e Summing over all such

graphs, cancellations take 'y
place (“Ward”-identity) { o ,); = gz_+

. . . vl P \
* The net-result is factorization ) Ll
of the amplitude in the l \;/ - /L/J'/?/

collinear limit in terms of a /(
splitting-functions and a tree-

diagram. Z
%

~




Applications to amplitudes

 The same mechanisms factorise the singular limits of two-loop amplitudes as well

* We have derived the factorisation of the singular limits explicitly for the abelian part
of two-loop amplitudes of colourless final-states.

* All limits work in a straightforward manner...except the single collinear limit for lines
with self-energy or vertex-corrections (collinear emissions from hard loops).




FACTORIZATION OF TWO-LOOP AMPLITUDE IN ITS SINGULAR LIMITS

planar double soft

_2e%g2

non-planar double soft

S

—92¢t5? (1 + 2k -1

planar soft-collinear




FACTORIZATION OF TWO-LOOP AMPLITUDE IN ITS SINGULAR LIMITS

non-planar soft-collinear

k i 1
2¢ts (2 — 1) +(2—a9) +(2-w) +
1 /! k

(A.6)

l 1
| NLO) (1) = NLO(1)—2ie? ( _@ - _<>) -Tree
k

single collinear (at k — —x1p1)

triple collinear —ie @ NLO ﬁn) |:8(2l'1p1 l—s)
!

A=t

two collinear pairs

single soft

] 1
ie2s |: ]> . NLO(ﬁn) (l) + ZD . NLO(ﬁn)(k)




integrand
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Numerical validation

gq+q—->y+y

Double soft scaling
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—-—- fit subtracted: 61
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integrand

Numerical validation

Soft collinear scaling
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Numerical validation

gq+q—->y+y

Two collinear pairs scaling
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Numerical validation
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Numerical validation

Single soft scaling

1016_
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10%2 fit: 64
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1074

integrand
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Numerical validation

Single collinear scaling
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Numerical integration

J—N\E
Can such subtractions be used
{o]§ evgluatlng loop amplitudes Ly
numerically? o >
‘DE?"’&M(:p

They are an irnberiant ingredient!
They remove “pinch”
singularities.

PATH

Other singularities which can be integrand with large variance

avoided with appropriate
contour-deformations are equally
important.

o
<
o
o
2
o
o}
2
©
€
=
S
=z

A very challenging problem! Very
encouraging progress by Z.
Capatti, V. Hirschi, D. — EZS?Q?%.EC. Double-box

Kermanschah, A. Pelloni, B. Ruijl 1 Reattotatwot deformation
at ETH and other groups.
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One-loop direct momentum-
space integration

e Foundational work by Nagy
and Soper

* and by Becker and Weinzierl
* Good results in computing

challenging one-loop
amplitudes.

e Tough competition at one-loop

with OPP/unitarity/semi- 4-jet production at NLO
analytic methods. (Becker, Goetz, Reuschle, Schwan, Weinzierl)



Loop-Tree Duality

\N=0(¢)0(q))

(k—p1)~?

Py + ph

S

(A —P1— 1)2)_2

* The energy component of the loop-momenta can be integrated out
simply, using Cauchy’s theorem.

* | eading to a nice mathematical structure at any loop order.

* |t appears to be advantageous numerically as well.

Catani, Gleisberg, Krauss,
Rodrigo, Winter;
Bierrenbaum, Catani, Draggiotis, Rodrigo;
Buchta, Chachamis, Draggiotis, Rodrigo;
Runkel, Szor, Vesga, Weinzierl;
Capatti, Hirschi, Kermanschah, Pelloni, Ruijl



Numerical integration of one-,two- and
three-loop off-shell planar box after LTD
(Euclidean region)

Results for 4—points multi-loop scalar integrals 1-loop, analytic (x 10°
1-loop, LTD (x 10°

2-loop, analytic (x 5 104

2_loop, LTD (x 5 10*

3-loop, analytic (x ~10’

3-loop, LTD (x =10”

*

T
>
)
O,
i
S
(@)
[0
o
=

Deviation [%]

Deviation [0]

25

Capatti, Hirschi, Kermanschah, Ruijl




A spin-off

Small mass expansions



Physical regulators

The subtraction counterterms are local.

They can be invented with dimensional regularisation
INn mind, but they can also be adapted to other
regularisation schemes for the IR divergences.

Small quark masses act as physical regulators.

In such case, the infrared counterterms integrate to

yield the logarithmically enhanced terms of the
integral.



Large logs from small
masses easily determined.




Large logs from small
masses easily determined.

— 2 2 2,2
u=mi+mz—s—1t, K =mim;— st,

ums um3 us ut
v = Us = y Us = 75, Ut = 7=

K’ K’ K

U Dbox‘ﬁn (,LL) = 2Li4(U1) -+ 2Li4(U3) — 2L14(’US) — 2Li4(1}t)
—2Li3(vy) L, (m7) — 2Li3(v3) L,(m3) + 2Liz(vs) L,u(s) + 2Liz(ve) L (2)
+Lig(vl)Li(m%) + LiQ('U?))Li(mg) — Liz(vs)Li(s) — Liz(vt)LZ(t)

1 1 1
+§ In(1 —v1) L3 (m3) + 5 In(1 —v3)L; (m3) — - In(1 —v,) L (s)

—%mu —u)L3(2).




Concluding remarks

Nested subtractions can separate at the integrand, the pinch-singularities of
Feynman diagrams and Feynman amplitudes.

We aim to formulate a subtraction method for two-loop amplitudes of
generic processes.

This can be the basis for a purely numerical evaluation of two-loop
amplitudes with an affordable computational cost.

Substantial amount of work is needed in achieving that...it requires an
excellent understanding of both pinched and integrable singularities
(contour deformations)

Spin-off: Nested subtractions are potentially useful for small mass
expansions of loop amplitudes (e.g. bottom/charm-quark loop-induced
processes, very high energy collider processes).



