

CMS tttt: recent results

CMS-TOP-17-019: 36 fb⁻¹ @ 13 TeV

CMS-TOP-18-003: 137 fb⁻¹ @ 13 TeV

Giovanni Zevi Della Porta on behalf of CMS

Open LHC TOP WG meeting 28 May 2019

tttt: the next frontier

Top quark pair pair production: a complex QCD process with large sensitivity to new physics effects

Standard Model prediction

Large theoretical uncertainties in inclusive cross section

QCD NLO/LO k-factor ranges between 1.2 and 2.0, depending on scale and PDF choices Large effects (up to 40%) from Leading Order EWK diagrams

13 TeV prediction used by ATLAS and CMS with 2016 data: $\sigma_{NLO}(tttt) = 9.2^{+2.9}_{-2.4}$ fb [1]

Most recent, with EWK NLO effects, used by CMS for full Run 2 analysis: 12+2.2.2 fb [2]

[1] J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301]

[2] R. Frederix, et al., JHEP 1802 (2018) 031 [arXiv:1711.0211]

Beyond the Standard Model

Several new physics couplings and particles can affect tttt production

EFTs, including four-fermion contact interactions

New particles coupling to top quark (see next slide)

Higgs physics: Top-Higgs yukawa coupling, Higgs oblique parameter

And more: gluinos, sgluons, ...

Some of these models generate SM-like kinematics, and can be probed with a cross section limit/measurement. Others have harder kinematics.

Four-fermion contact interaction

2HDM scalar/pseudoscalar

SUSY gluinos

New particles coupling to top quarks

Searches in other channels (pp \to X \to tt, pp \to ttX \to ttYY) possible, but have larger interference and/or require assumptions on couplings and total width of new particle

Final States

$$\begin{bmatrix}
 0\ell + 8q + 4b \\
 1\ell + 6q + 4b \\
 2\ell + 4q + 4b \\
 3\ell + 2q + 4b
 \end{bmatrix}$$

All-hadronic

Powerful with massive new particles (gluons), not yet explored with SM kinematics

1 lepton and opposite-sign 2 lepton (1L/2LOS)

Dominant BR, large tt pair-production background (systematics limited)

2 same-sign or ≥ 3 leptons (2LSS)

Comparable branching to OS2L, but reject the tt background (statistically limited)

Backgrounds

Two categories of backgrounds:

tt (including ttbb):

1L/2LOS: main background

2LSS: only with a 'fake' or 'charge flip' lepton

ttW, ttZ, ttH, ttVV:

1L/2LOS: small but tttt-like background

2LSS: main background

1L/2LOS: Analysis Strategy

Main background: tt

Estimate from simulation, with reconstruction and theory uncertainties

Use data (bulk of tt sample) to profile uncertainties

Analysis strategy

- 1) Reconstruct (i.e. tag) hadronic top decays
 - BDT to find the best (for 2LOS) or second best (for 1L) triplet of R=0.4 jets
 - BDT variables: m(jj), m(jjj), b-tag, ΔR(jjj, "W"), ΔR(jjj, "b"), p_Tjjj/ (Σp_Tj)
 - BDT score: T_{trijet}

1L/2LOS: Analysis Strategy

Main background: tt

Estimate from simulation, with reconstruction and theory uncertainties

Use data (bulk of tt sample) to profile uncertainties

Analysis strategy

- 1) Reconstruct (i.e. tag) hadronic top decays
 - BDT to find the best (for 2LOS) or second best (for 1L) triplet of R=0.4 jets
 - BDT variables: m(jj), m(jjj), b-tag, ΔR(jjj, "W"), ΔR(jjj, "b"), p_Tjjj/ (Σp_Tj)
 - BDT score: T_{trijet}
- 2) Use **event kinematics** to separate tttt from tt+(b)jets
 - Categorize events based on N_{jets}, N_b, N_{lep}
 - Train BDT in each category
 - BDT variables: T_{trijet}, HT, HT_{b-jets}, (HT p_T^{b1} p_T^{b2}), p_T^{j3}, p_T^{j4}, centrality, sphericity, p_T^l, ΔR_{ll}, ΔR_{bb}, (HT p_T^{trijet}), inv. mass of jets excluding trijet...

1L/2LOS: Signal Regions

Signal regions for 1L (left) and 2LOS (right) analyses

Post-fit distribution shown, good agreement with predictions

Fit: Difference between 'box' and 'shaded' uncertainty

Prefit unc.

XXX Postfit unc.

Distributions agree well with SM, but fit scales tttt to zero in 2LOS

2LSS: Analysis Strategy

Several main backgrounds: ttW, ttZ, ttH, nonprompt leptons

- Nonprompt leptons: data-driven estimate ('fake rate' method)
- ttW and ttZ: correct N_{jets} and N_b using tt data, then normalize in control regions
- ttH: correct N_b using tt data, and apply a large normalization uncertainty

Strategy: BDT analysis, cut-based cross-check

- Cut-based: number of jets, b-jets and leptons-
- BDT: 19 variables, separate tttt from Σ(bkg)

• (a)	Nbtags
-------	--------

• (b) Njets

• (c) Nlooseb

• (d) MET

• (e) Ntightb

• (f) $p_T(\ell_2)$

• (g) $m(\ell_1, j_1)$

• (h) $p_T(j_1)$

• (i) $p_T(j_7)$

• (j) $\Delta \phi(\ell_1, \ell_2)$

	/1 \		/ · \
•	(V)	p_T	1 1 - 1
•	I I I	ν_{1}	161
	()	LI	()0/

• (l) $\max(m(j)/p_T(j))$

• (m) Nleps

• (n) $p_T(\ell_1)$

• (o) $\Delta \eta(\ell_1, \ell_2)$

• (p) $p_T(j_8)$

• (q) H_T^b

• (r) $p_T(\ell_3)$

• (s) q_1

N_ℓ	$N_{\rm b}$	$N_{\rm jets}$	Region
		≤ 5	CRW
	2	6	SR1
		7	SR2
		≥ 8	SR3
		5	SR4
2	3	6	SR5
		7	SR6
		≥ 8	SR7
	≥ 4	≥ 5	SR8
≥ 3	2	5	SR9
		6	SR10
		≥ 7	SR11
	≥ 3	4	SR12
		5	SR13
		≥ 6	SR14
inverted Z-veto C			CRZ

2LSS: Control Regions and Distributions

Well behaved control regions, visible tttt signal in signal region

Pre-fit distribution shown, with normalizations based on theory prediction

2LSS: Signal Regions

Signal regions for cut-based (left) and BDT (right) analyses

Post-fit distribution shown, good agreement with predictions

- ttW and ttZ scaled to 1.3 ± 0.2 , ttH to 1.1 ± 0.3
- tttt scaled to 0.8 (cut-based) and 1.0 (BDT)
- BDT and cut-based analyses agree

Distributions agree well with SM including tttt

Uncertainties

1L/2LOS: total systematic uncertainty ~ total stat. uncertainty

Largest syst.: tt modeling, fraction of ttbb, b-tagging

2LSS: total systematic uncertainty ~ half of stat. uncertainty

Largest syst.: fraction of ttW/Z/H events with additional bb, jet scale, ttH

Systematic uncertainty
Integrated luminosity
Pileup modeling
Lepton reconstruction and identification
Jet energy corrections
b tagging
Ren. and fact. scales
PS scales
ME-PS matching
UE 👉
Jet multiplicity correction
Parton distribution functions
Top quark $p_{\rm T}$ reweighting
Heavy-flavor reweighting —
Rare process

		Impact on the
Source	Uncertainty (%)	tttt cross section (%)
Integrated luminosity	2.3–2.5	3
Pileup	0–5	1
Trigger efficiency	2–7	2
Lepton selection	2–10	2
Jet energy scale	1–15	9 🛑
Jet energy resolution	1–10	6
b tagging	1–15	6
Size of simulated sample	1–25	<1
Scale and PDF variations †	10–15	2
ISR/FSR (signal) †	5–15	2
ttH (normalization) †	25	5 🛑
Rare, $X\gamma$, $t\bar{t}VV$ (norm.) †	11-20	<1
tīZ, tīW (norm.) †	40	3-4
Charge misidentification †	20	<1
Nonprompt leptons †	30–60	3
$N_{ m jets}^{ m ISR/FSR}$ †	1-30	2
$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ †	35	11 📥

Impact on the

Results: SM

1L/2LOS 36 fb⁻¹, and 36 fb⁻¹ combination with 2LSS

1L/2LOS: No deviation from SM background prediction Combination with 36 fb⁻¹ 2LSS, which had 1.6σ significance

2LSS 137 fb-1

2.5σ significance, good agreement with 12+2.2-2.5 fb theory prediction

	Lumi	Significance	95% UL [fb]	σ(tttt) [fb]
1L/2LOS	36 fb ⁻¹	0.0 (0.4)	48 (52+26-17)	0+20
2LSS	36 fb ⁻¹	1.6 (1.0)	42 (23+12-8)	17+14-11
Combination	36 fb ⁻¹	1.4 (1.1)	33 (20+10-6)	13+11-9
2LSS	137 fb ⁻¹	2.5 (2.7)	23 (9+4-3)	13+6-5

Note: expected UL assumes no SM tttt

Results: BSM (1)

Effective Field Theory (36 fb⁻¹)

Consider 4 operators, assume they affect $\sigma(tttt)$ and not kinematics

Parametrize their impact on σ(tttt)

$$\mathcal{O}_{tt}^{1} = (\bar{t}_{R}\gamma^{\mu}t_{R})(\bar{t}_{R}\gamma_{\mu}t_{R})$$

$$\mathcal{O}_{QQ}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{Q}_{L}\gamma_{\mu}Q_{L})$$

$$\mathcal{O}_{Qt}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{t}_{R}\gamma_{\mu}t_{R})$$

$$\mathcal{O}_{Qt}^{8} = (\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L})(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R})$$

Convert 95% UL on σ(tttt) to limits on coefficients (marginalizing others)

Operator	Expected C_k/Λ^2 (TeV $^{-2}$)	Observed (TeV $^{-2}$)
\mathcal{O}^1_{tt}	[-1.5, 1.4]	[-2.2, 2.1]
\mathcal{O}_{QQ}^1	[-1.5, 1.4]	[-2.2, 2.0]
\mathcal{O}^1_{Qt}	[-2.5, 2.4]	[-3.7, 3.5]
\mathcal{O}_{Qt}^{8}	[-5.7, 4.5]	[-8.0, 6.8]

Results: BSM (2)

Top-Higgs Yukawa coupling (yt)

Off-shell Higgs has a ~10% contribution to tttt, which grows as y_t⁴

$$\sigma(t\bar{t}t\bar{t}) = \sigma^{\text{SM}}(t\bar{t}t\bar{t})_{g+Z/\gamma} + \kappa_t^2 \sigma_{\text{int}}^{\text{SM}} + \kappa_t^4 \sigma^{\text{SM}}(t\bar{t}t\bar{t})_H$$

$$\kappa_t = |y_t/y_t^{\text{SM}}|$$

 Different approach w.r.t extracting y_t from ggH and ttH, which requires assumption on total width of the Higgs

Two Higgs doublet model (2HDM)

On-shell scalar/pseudoscalar with $m_{H/A} > 2m_t$: (tt, t)+H/A, with H/A \rightarrow tt

- 2HDM samples and cross sections based on alignment limit and tanβ=1
- Different approach w.r.t. resonant pp → H/A → tt search, which suffers from width-dependent interference

Summary

Two recent CMS results

2016 data analysis (36 fb⁻¹) combining 1L/2LOS/2LSS 2LSS analysis of the full Run 2 dataset (137 fb⁻¹)

• 2.5 sigma, $\sigma(tttt) = 13^{+6}_{-5}$ fb, expected upper limit (assuming no signal) is now below σ_{SM}

Interest in tttt continues to grow

Active communities in both CMS and ATLAS

Many BSM models, only a few interpretations explored

Run 2 analyses ongoing

The majority of tttt events still on disk Stand to benefit from 14 TeV in Run 3

Detailed comparison with ATLAS tttt, from last LHC TOP WG meeting

indico.cern.ch/event/746611/

Backup

Comparison with SMEFiT (arXiv:1901.05965)

Operator	Observed (TeV $^{-2}$)
\mathcal{O}^1_{tt}	[-2.2, 2.1]
\mathcal{O}_{QQ}^1	[-2.2, 2.0]
\mathcal{O}^1_{Qt}	$[-3.7, 3.5] \leftarrow$
\mathcal{O}_{Qt}^8	[-8.0, 6.8]

SMEFiT uses the 36 fb⁻¹ 2LSS results, not yet the 1L/2LOS of TOP-17-019

Both CMS and arXiv:1901.05965 use MC@NLO, with NLO SM tttt and LO EFT up to $O(\Lambda^{-4})$

Wilson coefficients are constrained using the onesided asymptotic CLs upper limit (CMS) or the measured cross section with NNPDF-like MC replica approach (SMEFiT)

SMEFiT constrains other operators, but the right table shows the results of fits to constrain individual operators

Notation	Notation DoF Baseline $\mathcal{O}(\Lambda^{-2})$ only LO QCD				
OQQ1		[-5.2, 4.9]	[-54,83]	[-5.4, 5.2]	
0008	c_{QQ}^1	$\begin{bmatrix} -3.2, 4.9 \end{bmatrix}$ $\begin{bmatrix} -14, 12 \end{bmatrix}$	[-34, 83] $[-200, 18]$	$\begin{bmatrix} -3.4, 3.2 \end{bmatrix}$ $\begin{bmatrix} -21, 16 \end{bmatrix}$	
	c_{QQ}^8		[-200, 18] $[-610, 210]$	$\begin{bmatrix} -21, 10 \end{bmatrix}$ $\begin{bmatrix} -4.9, 4.9 \end{bmatrix}$	
0Qt1	c_{Qt}^1	[4.5, 4.5]			
OQt8	c_{Qt}^8	[-10, 8.1]	$[-69, 28]$ $[-1.9 \ 10^3, -110]$	[-11, 8.7]	
0Qb1	c_{Qb}^1	[6.9, 6.7]		[-6.1, 6.0]	
0Qb8	c_{Qb}^8	[-16, 12]	[-260, -14]	$\begin{bmatrix} -15, 11 \end{bmatrix}$	
Ott1	c_{tt}^1	[-2.9, 2.7]	[-26,41]	[-3.4, 3.2]	
Otb1	c_{tb}^1	[-6.8, 6.8]	$[-2.1 \ 10^4, -1.4 \ 10^3]$	[-6.1, 6.1]	
Otb8	c_{tb}^8	[-17, 12]	[-270, -15]	[-15, 11]	
OQtQb1	c_{QtQb}^1	[-5.4, 5.5]	$[160, 2.8 \ 10^3]$	[-4.8, 4.9]	
OQtQb8	c_{QtQb}^8	[-14, 14]	$[910, 1.6 \ 10^4]$	[-13, 13]	
081qq	$c_{Qq}^{1,8}$	[-0.6, 0.1]	[-1.2, 0.3]	[-0.6, 0.07]	
011qq	$c_{Qq}^{1,1}$	[-0.2, 0.02]	*	[-0.2, 0.03]	
083qq	$c_{Qq}^{3,8}$	[-0.5, 0.4]	[-3.3, -0.08]	[-0.7, 0.2]	
013qq	$c_{Qq}^{3,1}$	[-0.1, 0.09]	[-0.1, 0.2]	[-0.1, 0.09]	
08qt	c_{tq}^8	[-1.3, 0.4]	[-2.1, 1.5]	[-0.7, 0.09]	
01qt	c_{tq}^1	[-0.3, 0.02]	*	[-0.3, 0.03]	
08ut	c_{tu}^8	[-1.1, 0.04]	[-2.0, 0.09]	[-0.9, 0.03]	
01ut	c_{tu}^1	[-0.2, 0]	*	[-0.4, 0.03]	
08qu	c_{Qu}^8	[-2.6, 0.2]	[-4.4, 0.3]	[-2.6, 0.1]	
01qu	c_{Qu}^1	[-0.5, 0.02]	*	[-0.4, 0.03]	
08dt	c_{td}^8	[-2.5, -0.01]	[-4.6, -0.2]	[-1.6, 0.02]	
01dt	c_{td}^1	[-0.8, 0]	*	[-0.6, 0.03]	
08qd	c_{Qd}^8	[-2.7, 0.3]	[-3.7, 0.9]	[-1.9, 0.07]	
01qd	c^1_{Qd}	[-0.9, -0.01]	*	[-0.9, 0.05]	
OtG	c_{tG}	[-0.08, 0.03]	[-0.08, 0.03]	[-0.1, 0.04]	
OtW	c_{tW}	[-0.4, 0.2]	[-0.3, 0.1]	[-0.4, 0.2]	
ObW	c_{bW}	[-0.6, 0.2]	*	[-0.7, 0.2]	
0tZ	c_{tZ}	[-2.8, 4.5]	[-17, 4.6]	[-6.3, 7.4]	
Off	$c_{\varphi tb}$	[-9.4, 9.5]	*	[-9.7, 9.8]	
Ofq3	$c_{\varphi Q}^3$	[-0.9, 0.6]	[-1.0, 0.6]	[-1.0, 0.6]	
OpQM	$c_{\varphi Q}^{-}$	[-4.2, 3.9]	[-4.2, 3.8]	[-5.1, 4.6]	
Opt	$c_{arphi t}$	[-6.4, 7.3]	[-6.9, 7.8]	[-7., 8.0]	
Otp	c_{tarphi}	[-5.3, 1.6]	[-5.1, 1.6]	[-5.4, 1.6]	

SMEFiT individual bounds (single-operator fits)

Table 5.4. Same as Table 5.3, now for the results of individual fits when only one operator is constrained at a time. The bounds in italics have been obtained from the analytical minimisation of the χ^2 rather than using the SMEFiT numerical approach, see text for more details.