Top-quark mass measurement with $t\bar{t}+1$ jet events at 8 TeV in ATLAS

D. Melini^a, on behalf of the ATLAS collaboration

(and the collaboration of P.Uwer and I. Irles)

^aIFIC Valencia

28th May 2019

Outline

This talk is based on a very recent ATLAS measurement (arXiv:1905.02302)

Introduction

- the top-quark at the See P. Nason talk here!

Intro to m_t measurement with $t\bar{t}+1$ -jet - [EPJC 73(2013)5 2438, JHEP10(2015)121, EPJC77(2017) 11 794]

- \bullet the \mathcal{R} observable and its properties
- 7 TeV results and 8 TeV improvements
- analysis strategy for 8 TeV

m_t measurement with $t\bar{t} + 1$ -jet in ATLAS at 8 TeV - [arXiv:1905.02302]

- Event selection & control plots
- Unfolding and results
- m_t extraction from NLO calculations

Use $t\bar{t} + 1$ -jet events for a high precision m_t measurement

$$\mathcal{R} \; (\rho_{s}, \textit{m}_{t}) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \times \frac{\mathsf{d}\sigma_{t\bar{t}+1\text{-jet}}}{\mathsf{d}\rho_{s}} \; , \; \mathsf{with} \; \rho_{s} = \frac{340 \; \mathsf{GeV}}{\sqrt{s_{t\bar{t}}+1\text{-jet}}}$$

Needs

• Enough data

- Beyond LO
- Small theoretical corrections
- High sensitivity to m_t

Why

- Low stat. unc.
- Fix renorm. scheme
- Small theoretical uncertainties
- Reduce exp. syst.

${\cal R}$ properties

- $\sigma_{t\bar{t}+1\text{-jet}} \sim 25\% \ \sigma_{t\bar{t}}$ • NLO $(m_t^{\text{pole}} \text{ and } m_t(\mu))$
- NLO~10%LO,
- normalised
- 5x sensitivity of $\sigma_{t\bar{t}}^{\text{incl}}$

$t\bar{t} + 1$ -jet analysis 7 TeV results

The \mathcal{R} observable has been used to measure m_t^{pole} and $m_t(\mu = m_t)$ from data produced in 7 TeV pp collisions and collected by the ATLAS detector.

$$m_t^{
m pole} = 173.7 \pm 1.5 \; {
m (stat.)} \pm 1.4 \; {
m (syst.)}_{-0.5}^{+0.9} \; {
m (theo.)} \; {
m GeV}$$

Top pole-mass using tt+1jet at 8TeV

$t\bar{t} + 1$ -jet analysis 7 TeV results

The $\mathcal R$ observable has been used to measure m_t^{pole} and $m_t(\mu=m_t)$ from data produced in 7 TeV pp collisions and collected by the ATLAS detector.

$$m_t^{
m pole} = 173.7 \pm 1.5 \; ({
m stat.}) \pm 1.4 \; ({
m syst.})^{+0.9}_{-0.5} \; ({
m theo.}) \; {
m GeV}$$
 $m_t(\mu=m_t) = 165.9 \pm 1.4 \; ({
m stat.}) \pm 1.3 \; ({
m syst.})^{+1.5}_{-0.6} \; ({
m theo.}) \; {
m GeV}$

Analysis improvements for 8 TeV

Increased statistics allow for a finer binning.

In particular higher resolution in the most sensitive region 0.7 $< \rho_{\rm s} <$ 1.

improvements

increased statistics

reduced stat. unc.

• finer binning possible

increases sensitivity and reduce uncertainty

toy example

$$\frac{\Delta \mathcal{R}}{\mathcal{R}} = \mathcal{S} \times \Delta m$$

Assuming constant unc. on \mathcal{R} if \mathcal{S} [8TeV] = $2 \times \mathcal{S}$ [7TeV] then Δm [8TeV] = $\frac{1}{2} \times \Delta m$ [7TeV]

Analysis improvements for 8 TeV

Increased statistics allow for a finer binning.

In particular higher resolution in the most sensitive region 0.7 $< \rho_{\rm s} < 1.$

improvements

increased statistics

reduced stat. unc.

• finer binning possible

increases sensitivity and reduce uncertainty

toy example

$\frac{\Delta \mathcal{R}}{\mathcal{D}} = \mathcal{S} \times \Delta m$

Assuming constant unc. on \mathcal{R} if \mathcal{S} [8TeV] = $2 \times \mathcal{S}$ [7TeV] then Δm [8TeV] = $\frac{1}{2} \times \Delta m$ [7TeV]

increase $\mathcal S$ aiming for a 1 GeV total uncertainty on m_t^{pole}

(while keeping $\Delta \mathcal{R}$ under control!)

Analysis strategy

The top-quark mass is extracted from a comparison between measured data and theoretical predictions at NLO

Fixed order theo. calc. can be computed at

- particle level particles before interaction with detector
- parton level stable top-quarks

Data has to be corrected (unfolded) to the level where theo. predictions are defined.

Reporting results at both parton- and particle- level is useful to test effects of top-quark decay and hadronisation on m_t

Analysis strategy

The top-quark mass is extracted from a comparison between measured data and theoretical predictions at NLO

Event selection

Two sets of cuts are implemented to select a pure sample of $t\bar{t}+1$ -jet events.

Basic selection - semileptonic

- one lepton trigger
- one good lepton (μ or e)
- ≥ 1 primary vertex with 5 tracks
- ≥ 5 good jets
- == 2 b-tagged jets
- E_Tmiss > 30 GeV
- $m_T^W > 30 \text{ GeV}$

$t\bar{t}+$ 1-jet system reconstruction

- W_{lep} sum of I and ν
 - ν assuming $m_W = m_W^{PDG}$
- W_{had} from light jets i and j

•
$$0.9 < \frac{m_W^{\text{PDG}}}{m_{ij}} < 1.25$$

•
$$\min(p_{\mathsf{T}}^i, p_{\mathsf{T}}^j) \cdot \Delta R_{ij} < 90 \text{ GeV}$$

- Take b-jets plus W_{lep/had}
 - minimizing $\frac{|M_{t_{lep}} M_{t_{had}}|}{M_{t_{lep}} + M_{t_{had}}}$
 - $M_{t_{\text{lep}}}/M_{t_{\text{had}}} > 0.9$
- Leading jet left taken as extrajet
 - $p_{\rm T}^{\rm jet} > 50 \text{ GeV}, |\eta^{\rm jet}| < 2.5$

Control plots - semileptonic selection only

Overall good data-MC agreement

Control plots - full $t\overline{t}+1$ -jet selection

 $t\bar{t}+1$ -jet topology specific cuts do not introduce any bias

Detector level results

Channel	e+jets	μ +jets
$t\bar{t}$	5530 ± 470	7080 ± 600
Single top	191 ± 15	226 ± 18
W+jets	100 ± 33	121 ± 37
Z+jets	24 ± 8	13 ± 4
Multijet	21 ± 11	<11
Prediction	5870 ± 540	7440 ± 660
Data	6379	7824

- very small background contamination.
- ullet $ho_{
 m s}$ distribution still to be bkg-subtracted and normalised to get ${\cal R}$

Unfolding algorithm

Detector level distribution is corrected to parton and particle levels using Iterative Bayesian unfolding:

$$\mathcal{R}^{\text{ corrected}} = \textit{f}^{\text{acc.}} \cdot \left[\textit{M}^{-1} \otimes \mathcal{R}^{\text{ detector}} \right] \cdot \textit{f}^{\text{ph.sp}}$$

- M migration matrix from truth level to detector level
- facc. bin-by-bin factor accounting for detector acceptance
- f^{ph.sp} bin-by-bin correction accounting for phase space near threshold
- ullet Migration matrix and correction factors defined from $tar{t}$ Monte Carlo simulation
- effect of f^{ph.sp} is
 - very small for parton level unfolding
 - null for particle level unfolding

has a small dependence on m_t used in the MC.

With or without $f^{\text{ph.sp}}$ the parton level result changes $\lesssim 300$ MeV.

Globally, the unfolding procedure is found to be independent on the m_t parameter used to define the Monte Carlos simluation

Particle level results

In unfolding to particle level, only detector effects are corrected.

- Fiducial volume defined applying $t\bar{t}+1$ -jet system recontruction algorithm
- R defined using the (pseudo) top-quarks reconstructed by the algorithm
- e+jets and $\mu+$ jets channels compatible
- Systematics evaluated repeating the unfolding on different detector-level distributions

Particle level results

In unfolding to particle level, only detector effects are corrected.

- Fiducial volume defined applying $t\bar{t}+1$ -jet system recontruction algorithm
- R defined using the (pseudo) top-quarks reconstructed by the algorithm
- \bullet e+jets and μ +jets channels compatible
- Systematics evaluated repeating the unfolding on different detector-level distributions

Leading systs. from jet-energy-scale and $t\bar{t}$ modelling (as in other $t\bar{t}$ semilept. analysis)

No theo calc. in a well defined mass scheme to compare data with

No m_t determination is attempted from ${\cal R}$ at particle level

Particle level results

All the elements to perform a future m_t determination from particle-level \mathcal{R} are available

- bin values + unc. table
- covariance matrix
- R shape of main syst.

bin	$\mathcal{R}^{\text{purticle}}$	stat.	syst.
$0.000 < \rho_s < 0.250$	0.179	±0.007	+0.019 -0.027
$0.250 < \rho_s < 0.325$	1.169	±0.085	+0.156 -0.188
$0.325 < \rho_s < 0.425$	2.226	±0.099	+0.110 -0.107
$0.425 < \rho_s < 0.525$	2.296	±0.115	+0.111 -0.106
$0.525 < \rho_s < 0.675$	1.982	±0.087	+0.091 -0.081
$0.675 < \rho_s < 0.725$	1.138	±0.135	+0.112 -0.090
$0.725 < \rho_s < 0.775$	0.690	±0.077	+0.078 -0.078
$0.775 < \rho_s < 1.000$	0.113	±0.022	+0.034 -0.033

-26.8

0.1 -23.3

116.9

200.6

-18.2

102.5 -234.6

-88.0

176.4

0.725 - 0.775

0.775 - 1.000

463.2

-39.3

Parton level results

Data corrected for detector, hadronisation, top-quark decay effects.

- \mathcal{R} defined from on-shell top-quarks and a jet with $p_T^{\text{extrajet}} > 50 \text{ GeV}$ and $|\eta^{\text{extrajet}}| < 2.5$
- m_t determined by χ^2 minimisation
- Systematics on m_t evaluated repeating the mass extraction process on different detector-level distributions

Parton level results

Data corrected for detector, hadronisation, top-quark decay effects.

- \mathcal{R} defined from on-shell top-quarks and a jet with $p_T^{\text{extrajet}} > 50 \text{ GeV}$ and $|\eta^{\text{extrajet}}| < 2.5$
- m_t determined by χ^2 minimisation
- Systematics on m_t evaluated repeating the mass extraction process on different detector-level distributions

Leading systs. from jet-energy-scale and $t\bar{t}$ modelling (as in other $t\bar{t}$ semilept. analysis)

Theo. calc. for $t\bar{t}+1$ -jet at parton level exist in pole-mass and \overline{MS} schemes.

Same unfolded data can be used to determine m_t^{pole} and $m_t(\mu=m_t)$

Results for m_t

 $m_{\scriptscriptstyle t}^{\rm pole}$ and $m_{\scriptscriptstyle t}(\mu=m_{\scriptscriptstyle t})$ extracted minimising:

$$\chi^2 = \left[\mathcal{R}^{\text{ data}} \text{-} \mathcal{R}^{\text{ th.}}_{\text{ (m)}} \right]_i \mathsf{C}_{ij}^{-1} \left[\mathcal{R}^{\text{ data}} \text{-} \mathcal{R}^{\text{ th.}}_{\text{ (m)}} \right]_j$$

Additional uncertainties are given to the m_t extraction from χ^2 minimisation

- parametrisation of $\mathcal{R}_{(m)}^{\text{th.}}$
 - fit non-closure & residual dependence

theoretical uncertainties associated to the $t\bar{t} + 1$ -jet theo calc. used:

- missing higher orders (scales variations)
- PDFs, α_s variations

	Mass so
	Value
	Statisti
	Simulat
	Shower
	Colour
	Underly
	Signal l
	Proton
	Initial-
-	Monte (
-	Backgro
н	Detecto
н	Jet ener
-	Jet ener
-	Missing
J	b-taggii
	Jet reco
	Lepton
- 1	11.1

	Mass scheme	m_t^{pole} [GeV]	$m_t(m_t)$ [GeV	
	Value	171.1	162.9	
	Statistical uncertainty	0.4	0.5	
	Simulation uncertainties			
	Shower and hadronisation	0.4	0.3	
	Colour reconnection	0.4	0.4	
	Underlying event	0.3	0.2	
	Signal Monte Carlo generator	0.2	0.2	
	Proton PDF	0.2	0.2	
ì	Initial- and final-state radiation	0.2	0.2	
ı	Monte Carlo statistics	0.2	0.2	
ı	Background	< 0.1	< 0.1	
ı	Detector response uncertainties			
ı	Jet energy scale (including <i>b</i> -jets)	0.4	0.4	
ı	Jet energy resolution	0.2	0.2	
ı	Missing transverse momentum	0.1	0.1	
J	b-tagging efficiency and mistag	0.1	0.1	
	Jet reconstruction efficiency	< 0.1	< 0.1	
b	Lepton	< 0.1	< 0.1	
ı	Method uncertainties			
ı	Unfolding modelling	0.2	0.2	
ı	Fit parameterisation	0.2	0.2	
ı	Total experimental systematic	0.9	1.0	
ı	Scale variations	(+0.6, -0.2)	(+2.1, -1.2)	
1	Theory PDF $\oplus \alpha_s$	0.2	0.4	
J	Total theory uncertainty	(+0.7, -0.3)	(+2.1, -1.2)	

nole co va

Crosschecks and validation

Various cross-checks performed:

- ullet analysis independence on the value of m_t used in the MC
- unfolding tested with pulls (validate stat. unc.) and stress tests (unbiased on assumed input distribution)
- $m_t^{
 m pole}$ and $m_t(\mu=m_t)$ compatibility (known relation between two schemes)
- larger theo. unc. on $m_t(\mu=m_t)$ due to poorer description of the threshold region in the \overline{MS} scheme. Pole-mass scheme has better convergence in threshold region.

The money result of the result of the analysis

$$m_t^{
m pole} \ = 171.1 \ ^{+1.2}_{-1.1} \ {
m GeV}$$

Most precise measurement of m_t^{pole} from the 8 TeV dataset

Evaluation of off-shell effects on ${\mathcal R}$ at 13 TeV

many thanks to M. Worek for help and discussions

In the 8 TeV analysis, off-shell top-quarks and non resonant contributions were estimated to be covered by the theo. \oplus MC modelling uncertainties

New pp o WbWbj NLO QCD available which includes all contrib. [JHEP 1803 (2018) 169]

Possible to compare NLO+PS approach to the Full pQCD calculation and evaluate the effects of the two calculations on $m_{\rm t}$ determination from ${\cal R}$.

Setup of our NLO+PS the comparison

- dileptonic opposite-sign final state
- 13 TeV collisions energy
- ullet POWHEG for $t\overline{t}$ + 1-jet @NLO, matched to PYTHIA8 for showering and top-quark decay
- no hadronisation included in MC simulation
- fiducial volume defined as in Full calculation (off-shell level from now on)

Off-shell effects in m_t from $t\bar{t}+1$ -jet at 13 TeV

Can we reproduce $\mathcal R$ shape from Full NLO calculation with NLO (on-shell) + MC?

POWHEG+PYTHIA8 vs Full NLO QCD

- Comparison for $m_t^{\rm pole} = 173.2 \; {\rm GeV}$
- Scales set to $\mu_R=\mu_F=m_t^{
 m pole}$ (evaluation of unc. associated to the different predictions out of the scope of the study)
- MC is able to reproduce the Full NLO QCD calculation.
- Full $pp \rightarrow W^+W^-b\bar{b}j$ NLO QCD calculations can help to reduce MC modelling uncertainties

How m_t value is affected if using one theo. calc. or the other in its determination?

m_t determination at off-shell level

What do we have

- ullet a ${\cal R}$ NLO at off-shell level, with $m_t^{
 m pole}=173.2~{
 m GeV}$ [JHEP 1803 (2018) 169]
- ullet various ${\cal R}$ NLO at parton level, with $m_t^{
 m pole}=\{170,172.5,173.2,175\}$ GeV
- one parton NLO $(m_t^{\text{pole}} = 173.2 \text{ GeV}) + \text{PYTHIA 8}$ for top-quark decay and showering.

Strategy

- get parton-to-offshell level correction
- fold parton level (on-shell) to off-shell level [bin-by-bin factor]
- ullet get a parametrisation $\mathcal{R}\left(m_t^{\mathsf{pole}}\right)$ at off-shell level
- ullet perform a χ^2 minimisation to get a value of $m_t^{
 m pole}$ from each off-shell level ${\cal R}$.

m_t determination at off-shell level

Linearity test shows $m_t^{
m pole}$ from off-shell level compatible with $m_t^{
m pole}$ from parton level

 m_t^{pole} measurement at parton and off-shell level is equivalent

m_t determination at off-shell level

Linearity test shows m_t^{pole} from off-shell level compatible with m_t^{pole} from parton level

 $m_{\scriptscriptstyle +}^{\rm pole}$ measurement at parton and off-shell level is equivalent

 Δm (on-shell vs off-shell) computed for different binning choices

binning choice

On average, $\Delta m \sim 300$ MeV is covered so far by theo. unc. reported so far.

Conclusions and outlook

Summary

- ullet m_t is a fundamental parameter which has to be measured experimentally
- It become important to estimate theo. unc. on m_t with 100 MeV precision
- ullet The ${\mathcal R}$ observable has good properties to extract m_t from a data-theo comparison
- ATLAS used $\mathcal R$ to obtain most precise $m_t^{
 m pole}$ measurement at 8 TeV $m_t^{
 m pole}$ [ATLAS-ttj @8 TeV] = 171.1 $_{-1.1}^{+1.2}$ GeV
- Results were given also for
 - different mass schemes (pole mass, running mass, ...)
 - different levels (parton vs particle)

which could help to improve our QCD understanding in m_t determinations.

- ullet evaluated the impact of off-shell and non-resonant contributions in m_t determinations from ${\cal R}$
 - NLO+PS is good in reproducing Full pQCD calculation
 - Difference in m_t^{pole} determinations covered by current MC \oplus theo unc.

Back-up

Parton and particle level measurements

$\ensuremath{\mathcal{R}}$ unfolding to parton level

- assumptions on modelling of top-quark decay, hadronisation, detector response, . . .
 (covered by MC modelling uncertainties often the leading systematics!)
- off-shell and non resonant contributions not considered in ME+PS Monte Carlo (usually estimated to be small and covered by MC+theo uncertainties)
- ullet NLO QCD calculations available o can perform m_t measurement

${\cal R}$ unfolding to particle level

Particle level = {level made of stable particles before detector interaction. No top quark exist here, but only its decay products! $pp \to W^+W^-b\bar{b}j \to \dots$ }

- data corrected for detector effects only in a fiducial volume (reduce systematics on observable and minimise assumptions on correction)
- NLO QCD calculations available [JHEP 1803 (2018) 169] for 13 TeV dileptonic final state (cannot measure m_t with available \mathcal{R} measurements)
- can include off-shell and non resonant contributions in the calculation

Measuring m_t at both levels is an important check on our understanding of QCD

Particle level $t\bar{t}+1$ -jet system reconstruction

$$\begin{split} p_{\rm T}(\ell) > 25 \, {\rm GeV} \qquad p_{\rm T}(j) > 25 \, {\rm GeV} \qquad & |\eta(\ell)| < 2.5 \, {\rm GeV} \qquad |\eta(j)| < 2.5 \, {\rm GeV} \qquad \Delta R(\ell,j) > 0.4 \\ \\ p_{\rm T}(\nu) > 30 \, {\rm GeV} \qquad & m_{\rm T}^W = \sqrt{2 \cdot p_{\rm T}(\ell) \cdot p_{\rm T}(\nu) \cdot \left[1 - \cos{(\phi(\ell) - \phi(\nu))}\right]} > 30 \, {\rm GeV} \end{split}$$

Build the leptonic W boson candidate (W_{lept}) summing the lepton and neutrino four momenta

Hadronic W boson candidates (W_{had}^a) are built from all the jet pairs (j_i, j_k) which satisfies

$$0.9 < \frac{m_W^{\text{mod}}}{\sqrt{(\rho_{J_l} + \rho_{J_k})^2}} < 1.25$$

 $\min\{p_T(j_l), p_T(j_k)\} \cdot \Delta R(j_l, j_k) < 90 \text{ GeV}$

Construct hadronic and semileptonic top-quark candidates r_{had}^{l} and r_{had}^{k} from all the pairings of j_{b1} and j_{b2} with W_{hept} and all the W_{had}^{a}

Choose the combination $\{t_{\text{bad}}, t_{\text{lep}}\}$ which minimises $\frac{|m(t_{\text{bad}}^{L}) - m(t_{\text{lep}}^{L})|}{m(t_{\text{bad}}^{L}) + m(t_{\text{lep}}^{L})}$ and require $\frac{m(t_{\text{lep}})}{m(t_{\text{bad}}^{L})} > 0.9$

Between the jets not used in top-quarks reconstruction, take the leading p_T one and require p_T estraiget > 50 GeV.

Off-shell level pQCD calculations

calculations reported in [JHEP 1803 (2018) 169]

- Full (all contributions included)
- NWA (no off-shell contributions included)
- NWAprod (no off-shell and no NLO in top decay)

Off-shell level fiducial volume

Off-shell level volume definition in [JHEP 1803 (2018) 169]

- I stands for lepton
- j stands for every jet

$$p_T(\ell) > 30 \text{ GeV},$$
 $p_T(j) > 40 \text{ GeV},$ $p_{Tiss} > 40 \text{ GeV},$ $\Delta R_{jj} > 0.5,$ $\Delta R_{\ell\ell} > 0.4,$ $\Delta R_{\ell j} > 0.4,$ $|y_{\ell}| < 2.5,$ $|y_{j}| < 2.5,$

Off-shell level possible calculations

NAME	Initial State		Calculation		Final State
NLOprod	pp	$\overset{\textit{NLO}}{\longrightarrow}$	t₹j	LO →	$e\mu bar{b} u_e u_\mu j$
NLO	рр	$\overset{\textit{NLO}}{\longrightarrow}$	tīj	$\overset{\textit{NLO}}{\longrightarrow}$	$e\mu bar{b} u_e u_\mu j$
Full	рр		$\overset{\textit{NLO}}{\longrightarrow}$		$e\mu bar{b} u_e u_\mu j$
PP8	pp	$\overset{\textit{POWHEG}}{\longrightarrow}$	tīj	$\stackrel{\textit{PYTHIA}}{\longrightarrow}$	$e\mu bar{b} u_e u_\mu j$

On the theoretical uncertainty of m_t

Depending on the definition of the mass scheme used, the theoretical uncertainty associated to m_t can be difficult to evaluate.

example for direct measurments

Experiments report stat and syst uncert, but do not report pure theoretical unc.

In global EW fits, ± 0.5 GeV are added to the m_t^{MC} uncertainty to cover effects spoiling its identification with m_t^{pole} .

Wide ongoing discussion... some refs

G. Corcella arXiv: 1903.06574

M. Buttenschon etal. PRL117(2016)232001

S. Moch at al., arXiv 1405.4781

A. Juste et al., EPJC 74 (2014) 3119

P. Nason, arXiv:1712.02796

A. H. Hoang et al., arXiv:1412.3649

Pole mass and \overline{MS} schemes allow to evaluate theoretical uncertainty from missing higher orders in the pQCD calculation

 $m_t^{\rm pole}$ is well-defined up to the level of "renormalons" (non-perturbative corrections powers of α_s): (interpretation uncertainty $\lesssim 200 \, MeV$ much smaller than actual experimental uncertainties on $m_t^{\rm pole}$ and also covered by theo. unc. associated to missing higher orders and PDFs choice)

Uncertainty due to renormalons

Recent article from Nason et al. [1810.10931] claims renormalons effects are present when fiducial cuts are applied.

(non inclusive quantities, and they also affect the \overline{MS} scheme)

Observables computed with or without renormalons contributions are corrected by few percent (tables 3-6 in Nason's article). In particular, the example of reconstructed top-quark mass is given.

What would the impact be on the \mathcal{R} observable?

Suppose the reconstructed $m_{t\bar{t}+1\text{-jet}}$ is miscalculated due to renormalons effects. From [1810.10931], the size of such uncertainties is of the $\sim\!1$ GeV order at NLO. The ρ_s distribution would then be affected by $\lesssim 1\text{GeV}/(2m_t) \sim 0.5\%$ (smaller than JES for instance...)