New method to extract the top-quark width from Non-Resonant Production

Tomáš Ježo

University of Zürich
In collaboration with C. Herwig ${ }^{\dagger}$ and B. Nachman based on [arXiv:1903.10519]
\dagger my slides based on those of C. Herwig

Universität Zürich ${ }^{\text {UZH }}$

LHC TOP WG meeting
May 2019

The top-quark width

- Though the top mass has been measured to sub-\% precision, current direct width measurement sensitivity is $\sim 50 \%$
- The SM predicts a precise relation between the top-quark mass and width, and has been calculated at NNLO QCD

$$
\Gamma_{t}^{\mathrm{LO}}=\frac{G_{F} m_{t}^{3}}{8 \sqrt{2} \pi}\left(1-\frac{m_{W}^{2}}{m_{t}^{2}}\right)^{2}\left(1+2 \frac{m_{W}^{2}}{m_{t}^{2}}\right)
$$

- Precise measurements of the top width allow stringent tests of the SM
- Modifications from BSM physics remain possible:
- Undetected decays: $t \rightarrow H^{+} b$, FCNCs, SUSY, \ldots
- Radiative corrections ($g_{t w b}$): SUSY, 2HDMs, W - W^{\prime} mixing

Previous measurements (I)

- Since Tevatron, there are two methods used to measure the top width
- Template fits to reconstructed mass spectra (lepton+jets) (direct measurement)
- $\Gamma_{t}=1.76 \pm 0.33$ (stat. $)_{-0.68}^{+0.79}$ (syst.) GeV

Previous measurements (II)

- Since Tevatron, there are two methods used to measure the top width
- Template fits to reconstructed mass spectra (lepton+jets) (direct measurement)
- $\Gamma_{t}=1.76 \pm 0.33$ (stat. $)_{-0.68}^{+0.79}$ (syst.) GeV
- Combination of t-channel single-top XS and $(t \rightarrow W b) /(t \rightarrow W q)$ ratio (indirect measurement)

$$
\Gamma_{t}=\frac{\sigma_{t-\text { ch. }}}{\mathcal{B}(t \rightarrow W b)} \cdot \frac{\Gamma(t \rightarrow W b)^{\text {theor. }}}{\sigma_{t-\text { ch. } .}^{\text {theor. }}}
$$

- $\Gamma_{t}=1.36 \pm 0.02$ (stat.) $)_{-0.11}^{+0.14}$ (syst.) GeV
- But assumes $\mathcal{B}(t \rightarrow W q)=1$
[arXiv: 1404.2292]

Our proposal

- Use the measurement of $m_{b l}^{\text {minimax }}$ in the dilepton channel [TOPQ-2017-05] to extract Γ_{t} using off-shell events (direct measurement)

- $m_{b l}^{\text {minimax }}=\min \left\{\max \left(m_{b_{1}, \ell_{1}}, m_{b_{2}, \ell_{2}}\right)\right.$,

$$
\left.\max \left(m_{b_{1}, \ell_{2}}, m_{b_{2}, \ell_{1}}\right)\right\}
$$

- Kinematic endpoint at $\sqrt{m_{t}^{2}-m_{W}^{2}}$ at LO
- Large $m_{b l}^{\text {minimax }}$ dominated by off-shell $t \bar{t}$ and $t W$ production

$t \bar{t}$ and $t W$ interplay

- $t W 5$ FNS $\left(b\right.$ in proton, $\left.m_{b}=0\right)$

- Requires a procedure to remove $t \bar{t}$ contribution

$t \bar{t}$ and $t W$ interplay

- $t W$ 5FNS (b in proton, $m_{b}=0$)

Requires a procedure to remove $t \bar{\not}$ contribution

$t \bar{t}$ and $t W$ interplay

- $t W$ 5FNS $\left(b\right.$ in proton, $\left.m_{b}=0\right)$

- Requires a procedure to remove $t \bar{t}$ contribution

$$
\mathcal{M}=\mathcal{M}^{t W}+\mathcal{M}^{t \bar{t}}
$$

Diagram Removal: $\mathcal{R}^{\mathrm{DR}}=\frac{\left|\mathcal{M}^{t W}\right|^{2}}{2 s}$
Diagram Subtraction: $\mathcal{R}^{\mathrm{DS}}=\frac{\left|\mathcal{M}^{t W}+\mathcal{M}^{t \bar{t}}\right|^{2}-\mathcal{C}}{2 s}$

$t \bar{t}$ and $t W$ interplay

- $t W$ 5FNS (b in proton, $m_{b}=0$)

- Requires a procedure to remove $t \bar{t}$ contribution
- $t W$ 4FNS (no b in proton, $m_{b}>0$)

- Unified treatment of $t \bar{t}$ and $t W$

$t \bar{t} \mathcal{E r}_{r} t W$ in POWHEG BOX RES: b_bbar_41

- $p p \rightarrow \ell^{+} \nu_{\ell} l^{-} \bar{v}_{l} b \bar{b}$ production at NLO
- Resonance-aware matching to parton showers [TJ, Nason, 2015]
- Exact spin correlations* and exact off-shell effects
- W hadronic decays work in progress
- Generator: b_bbar_41 [TJ, Lindert, Nason, Oleari, Pozzorini, 2016]

$t \bar{t} \mathcal{E r}^{t} t W$ in POWHEG BOX RES: b_bbar_41

Multiple-radiation-improved NLOPS (allrad)

- $p p \rightarrow \ell^{+} v_{\ell} l^{-} \bar{v}_{l} b \bar{b}$ production at NLO
- Resonance-aware matching to parton showers [TJ, Nason, 2015]
- Exact spin correlations* and exact off-shell effects
- W hadronic decays work in progress
- Generator: b_bbar_41 [TJ, Lindert, Nason, Oleari, Pozzorini, 2016]
- Multiple emissions described using the matrix element via the allrad feature

$t \bar{t} \mathcal{E r}_{r} t W$ in POWHEG BOX RES: b_bbar_41

Traditional NLOPS

Multiple-radiation-improved

- $p p \rightarrow \ell^{+} \nu_{\ell} l^{-} \bar{v}_{l} b \bar{b}$ production at NLO
- Resonance-aware matching to parton showers [TJ, Nason, 2015]
- Exact spin correlations* and exact off-shell effects
- W hadronic decays work in progress
- Generator: b_bbar_4l [TJ, Lindert, Nason, Oleari, Pozzorini, 2016]
- Multiple emissions described using the matrix element via the allrad feature

$t \bar{t} \mathcal{E r}_{r} t W$ in POWHEG BOX RES: b_bbar_41

Traditional NLOPS

Multiple-radiation-improved

- $p p \rightarrow \ell^{+} \nu_{\ell} l^{-} \bar{v}_{l} b \bar{b}$ production at NLO
- Resonance-aware matching to parton showers [TJ, Nason, 2015]
- Exact spin correlations* and exact off-shell effects
- W hadronic decays work in progress
- Generator: b_bbar_4l [TJ, Lindert, Nason, Oleari, Pozzorini, 2016]
- Multiple emissions described using the matrix element via the allrad feature

$t \bar{t}$ and $t W$ interplay

- Probing the quantum interference between singly and doubly resonant top-quark production in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector [TOPQ-2017-05]:

- b_bbar_41 prediction describes the data in the tail much better than predictions obtained using DR and DS prescriptions

Simulated samples

- Study width-dependence using the b_bbar_4l process implemented in POWHEG BOX RES
- This includes:
- Consistent NLO+PS treatment of top resonances
- Corrections to top propagators, and off-shell top-decay chains
- Full NLO accuracy in production, decay, and their interference
- Exact spin correlation at NLO
- Nominal sample uses $m_{t}=172.5 \mathrm{GeV}$ and $\Gamma_{t}=1.33 \mathrm{GeV}$
- Alternatives with $\Gamma_{t}=0.66,1.0,1.66,2.0 \mathrm{GeV}$
- Systematics: scale, PDF, α_{S}, and top mass variations
- Also generated a LO MG5_aMC@NLO sample for comparison

Extraction procedure (I)

- Calculate minimax- $m_{b \ell}$ using the dedicated TOPQ-2017-05 Rivet routine:
- Interpolate yields in each bin as a function of the width

Extraction procedure (I)

- Calculate minimax- $m_{b \ell}$ using the dedicated TOPQ-2017-05 Rivet routine:
- Interpolate yields in each bin as a function of the width

Extraction procedure (I)

- Calculate minimax- $m_{b \ell}$ using the dedicated TOPQ-2017-05 Rivet routine:
- Interpolate yields in each bin as a function of the width

- Predictions in excellent agreement with the data
- Calculate a χ^{2} using data + covariance matrix

$$
\chi^{2}=\sum_{i, j}\left(d_{i}-m_{i}\right) \cdot V_{i j}^{-1} \cdot\left(d_{j}-m_{j}\right)
$$

- The best-fit width minimizes the χ^{2}
- Vary data $\left(d_{i}\right)$ and model $\left(m_{i}\right)$ to assess uncertainities

Results

- We find that $\Gamma_{t}=1.28 \pm 0.30 \mathrm{GeV}$ using b_bbar_4l model
- Measurement uncertainty (0.27 GeV) dominates theory $(0.14 \mathrm{GeV})$
- The LO MG5_aMC@NLO model extracts $\Gamma_{t}=1.18 \pm 0.22 \mathrm{GeV}$
- Predicts larger sensitivity to the width than the NLO model!

Compare to:
best direct result $1.76+0.86 /-0.76 \mathrm{GeV}$
(ATLAS: [1709.04207])
best indirect result $1.36+0.14 /-0.11 \mathrm{GeV}$
(CMS: [1404.2292])

Results

- We find that $\Gamma_{t}=1.28 \pm 0.30 \mathrm{GeV}$ using b_bbar_4l model
- Measurement uncertainty (0.27 GeV) dominates theory (0.14 GeV)
- The LO MG5_aMC@NLO model extracts $\Gamma_{t}=1.18 \pm 0.22 \mathrm{GeV}$
- Predicts larger sensitivity to the width than the NLO model!

Compare to:
best direct result $1.76+0.86 /-0.76 \mathrm{GeV}$
(ATLAS: [1709.04207])
best indirect result $1.36+0.14 /-0.11 \mathrm{GeV}$
(CMS: [1404.2292])

Summary

－Direct measurements of the top－quark width are currently at the level of accuracy of 50%
－We present a new method that considers only off－shell events
－$W^{+} W^{-} b \bar{b}$ analysis strategy of TOPQ－2017－05 provides a clean extraction of the cross section in the off－shell regime
－The b＿bbar＿4l generator is the first even generator capable of describing the $t \bar{t}$ and $t W b$ processes required for this analysis at NLO＋PS accuracy
－The combination of the two yields $\Gamma_{t}=1.28 \pm 0.30 \mathrm{GeV}$
－This strategy should be pursued by LHC experiments to design new，more powerful anal－ yses！

Direct determination of Γ_{t} with bb41

Backup slides

b_bbar_4l generator setup

- Nominal sample produced with $\mathrm{m}_{\mathrm{t}}=172.5 \mathrm{GeV}, \Gamma_{\mathrm{H}}=1.33 \mathrm{GeV}$,
- Alternative widths simulated: 0.66, I. $0, \mathrm{I} .66,2.0 \mathrm{GeV}$
- NNPDF3.0 NLO alphas $=0.118$ set, with AI4 tune
- Scale: geometric mean of (anti)top transverse mass, $\mathrm{h}_{\text {damp }}=\mathrm{m}_{\mathrm{t}}$
- All different-family lepton flavor combs ("channel 7")
- Three hardest emissions kept ("allrad I")
- Uncertainties
- Top mass variations $m_{t}=171.5,173.5$
- alphas variations: $0.115(0.121)$ in PDF + Var3C in shower
- Weights: 7-point scale variations, PDF eigenvectors
- For statistically independent events, fit dependence per bin:

$$
m_{i}\left(\alpha_{s}, m_{t}\right)=\hat{m}_{i}\left(\alpha_{s}^{\mathrm{SM}}, m_{t}^{\mathrm{SM}}\right)+\hat{a}_{i}\left(\alpha_{s}-\alpha_{s}^{\mathrm{SM}}\right)+\hat{b}_{i}\left(m_{t}-m_{t}^{\mathrm{SM}}\right)
$$

Uncertainty breakdown

Uncertainty [GeV]		b_bbar_41	MG5_aMC@NLO
Experimental		$+0.27 /-0.26$	± 0.20
Theory	PDF	± 0.06	± 0.04
	Scale	± 0.10	± 0.06
	m_{t}	± 0.03	± 0.03
	α_{s}	± 0.06	± 0.04
	Combined	± 0.14	± 0.10
Simulation Stats.	± 0.04	± 0.04	
Total	± 0.30	± 0.22	

Uncertainties on the (observed) extracted widths, in GeV

Various generator comparisons

(|806.04667 /TOPQ-20|7-05)

Goodness of fit

Model	Full Distribution		$m_{b \ell}^{\operatorname{minimax}}>160 \mathrm{GeV}$	
	χ^{2} / nDOF	p-value	χ^{2} / nDOF	p-value
Powheg+Pythia8 $t \bar{t}+t W$ (DR)	$10 / 14$	0.71	$8.5 / 8$	0.40
Powheg+Pythia8 $t \bar{t}+t W$ (DS)	$10 / 14$	0.77	$6.6 / 8$	0.56
Powheg+Pythia8 $\ell^{+} \nu \ell^{-} \nu b b$	$5.9 / 14$	0.92	$2.0 / 8$	0.95
MG5_aMC+Pythia8 $t \bar{t}+t W$ (DR1)	$26 / 14$	0.14	$13 / 8$	0.17
MG5_aMC+Pythia8 $t \bar{t}+t W$ (DR2)	$36 / 14$	0.02	$20 / 8$	0.08
Powheg+Herwig++ $t \bar{t}+t W$ (DR)	$26 / 14$	0.07	$7.3 / 8$	0.48
MG5_aMC+Herwig++ $t \bar{t}+t W$ (DR)	$30 / 14$	0.04	$11 / 8$	0.23
Powheg+Pythia6 $t \bar{t}+t W$ (DR)	$14 / 14$	0.49	$11 / 8$	0.23
Powheg+Pythia6 $t \bar{t}+t W$ (DS)	$14 / 14$	0.49	$10 / 8$	0.32
MG5_aMC+Pythia8 (LO) $W W b b$	$12 / 14$	0.68	$8.2 / 8$	0.42
MG5_aMC+Pythia8 (LO) $W W b b$, no int.	$28 / 14$	0.05	$22 / 8$	0.005

(I806.04667 /TOPQ-2017-05)

