ABP on HPC

X. Buffat, M. Schenk, G. ladarola, H. Rafique and G. Rumolo
for the ABP Computing Working Group

= PyHEADTAIL(-PYECLOUD): Coherent instabilities
= COMBI : Coherent beam-beam effect

= PyOrbit : Space-charge effects

= QOverall feedback

Multibunch

@ PYHEADTAIL - PYECLOUD

= Watch the result of a simulation of a full SPS batch (288
bunches, modelled with 10° macroparticles each) circulating
In the LHC, interacting with electron clouds around the
machine (3-10° macroparticles) at this link

= Impressive scaling with various
levels of parallelisation 1000 -

Simulations performed on the CERN HPC cluster

— Multi-node parallelisation is

Stepi 1:
Parallelization
over segments
| Step2: |

essential £l Ny s
@ : j Parallelization
- I " E ' ' overturn§
Mainly python, using MPI4Py : .
= Currently ramping up the usage, & , N < bnch sots
smooth testing / debugging = |
= Could profit from IT expertise G. ladarola |
.y 1 L i ;
on profiling tools 1 I 2

https://indico.cern.ch/event/805674/contributions/3383360/attachments/1823659/2983757/media3.mp4

Multibunch PyHEADTAIL

* Used CERN HPC between Sept.’18
and Jan.'19

PyHEADTAIL: multi-core particle
tracking simulations

based on Python 2.7, using also
h5py-parallel, cython, mpi4py, etc.

openMPI 1.8.4 module

* Experience

v

v
v
v

Turn tracking time [s]

/

10% 4

10° -

1071

June 2018, be-nodes

J. Komppula

i

16 32 64 128 256 512

N cores

Macroparticles
per bunch:

———

p—

e

[E———

e

512k
256k
128k
64k
32k
8k
2k

3564 bunches, 20k mppb
20 slices per bunch

3 turns wake, chromaticity
mpi="circulat_full_ring_fft’

Efficient job handling: typically jobs start running within minutes, scancel with immediate effect, squeue refreshes

fast
Usually useful logs for debugging

No unexplained aborts once using “correct” submission parameters (# cores, hyper threading) - see issues below

Generally a very positive experience

Issues

* # cores: jobs would fail if # cores not integer multiple of # cores per node
(depending on queue: BE 20 cores per node, Batch: 16 cores per node)

Had to disable hyper threading, otherwise inexplicable job aborts at beginning
(input from experts in reply to trouble ticket opened by J. Komppula)

@ COMBI
&)

Beam-beam mteractlon

_ S. V Furuseth — s 7
E 109 4.95 % 102 71 49;10‘ + 6
*é B Wi o . 15 :)/ .
| EEEEE : - 5
= et 4=
1.0 1 Weerrrrrens .,,,““”:.”:::::“: 4310 g-
o, 057 "":ﬁ{f55?55:"5?5’-.‘;’555555&3’5;-:-;--:::::g- . 0 ’ i 38
5 064 e g { %
% 1)/ o — SDMBPI/IP i 1R o TR A - = . //’ 2
e s e ———— e Py] ; .
ol M'PI 0;? MP | | | | | +/ ® : . .
1 2 4 8 16 32 64 128 +
Number of cores L Esarraud
(d) 2 beams (Np1 = 8 = Np2). 1 wakefield calculation and 00 1 2 3 4 5 6 7 8 90
3 beam-beam calculations, as in Fig. 4c. number of core (Ngpy)
= COMBI is used mostly for instability simulations involving beam-beam interactions
and/or noise
= 10°to 10’ macroparticles per bunch, up to tens of bunches per beam
= Hybrid OpenMP and MPI parallelisation (C and Fortran, using gcc and
mvapich2 on HPC) : Some effort when starting, but currently running smoothly
= Multi-node parallelisation is required for multibunch studies, probably ramping
up the usage towards end of summer
4

= Most single/two bunch studies are now ported to HTCondor (still running on
HPC when parallel resources fall short on HTCondor)

= PyORBIT
@

S ace-char e effects

Grouped Cumulatlve Time

AA -
... -
—1Nd hyprth ading OFF
il i et e e e o) Node hyperthreading ON. | =
=== 2 Nodes hyperthreading OFF
: : : : === ‘2 Nodes hyperthreading ON
1 il | il] |
1000 2000 3000 4000 5000 6000 7000
Turn [-]

PyORBIT is used on HPC mainly for
working point studies in the PS
5.10° macroparticles, 2.5D PIC solver

Good scaling on two nodes, but
absence of scaling / detrimental effect
with hyperthreading
Access to a shared system is critical as
the building of the code is heavy
= Currently AFS performs well, but
after ?

Time [seconds]

100 -

80

60

40t

20

v PyORBIT Fa
@

S| ace-char je effects s

Grouped Cumulatlve Time

“H.R f
| plieeet e B ni s K Gl i D i/ el i St e R Ga L e)~ o O s ey
B T e]
w
- Eeesmmmearteaaenbiene) Mot o B0 b NG Po i e Deo st B bl
o
=)
.- .. e -
E
| R e
— 1 Node hyperthreadlng OFF
-, | .,.,......,..._..,..._..,......,.,.._..,..._..,...,_..,..._..,...,.‘.1.Nod.e.hyp_e.rth.r.eadmg.QN.,._
=== 2 Nodes hyperthreading OFF
: === ‘2 Nodes hyperthreading ON
0 1 il | il] |
0 1000 2000 3000 4000 5000 6000 7000
Turn [-]
120 Grouped Time for 1 Simulation Turn

T
=== 1 Node hyperthreadlng OFF E : .I:
1 Node hyperthreading ON H Ra Iq Ue

mmm 2 Nodes hyperthreadlng OFF

! I !
100 200 300 400 500

PyORBIT is used on HPC mainly for
working point studies in the PS

5.10° macroparticles, 2.5D PIC solver

Good scaling on two nodes, but
absence of scaling / detrimental effect
with hyperthreading

Access to a shared system is critical as
the building of the code is heavy

= Currently AFS performs well, but
after ?

The execution does not seem smooth,
with identical parts executing significantly
slower at times

This feature is not limiting, but can it be

understood ?
6

Feedback

Overall the feedback from the users of the HPC in ABP is very
positive: The machines are efficient and most of the issues solved

rapidly via tickets
Four potential improvements :

= Provide expertise with profiling tools

= Often the output data can be (at least partially) processed on the
cluster to avoid large data transfer to other file systems — The
frontends are sweating and requesting a an interactive job seems like
an overkill (and is pretty inconvenient if the queues are full)

- Is there an efficient solution, e.g. powerful frontends or dedicated
'post-processing’ nodes

= Hyperthreading does not always behave well (jobs killed,
absence/negative scaling)

= Could jobs running batch-* queues have access to bescratch ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	page5 (1)
	page5 (2)
	Slide 7

