

Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Sweden, Switzerland, and United Kingdom

Associate Member States: India, Lithuania, Pakistan, Turkey, Ukraine

Associate Member States in the pre-stage to Membership: Cyprus, Slovenia

Observers to Council: Japan, Russia, US, European Union, JINR, and UNESCO

Distribution of All CERN Users by Nationality on 24 January 2018

MEMBER STATES 7889 Austria 117 Belgium 120 Bulgaria 96 Czech Republic 244 67 Denmark Finland 111 France 868 Germany 1342 Greece 237 Hungary 76 Israel 65 Italy 2045

168

67

350

127

134

124

447 85

228

ASSOCIATE MEMBERS

United Kingdom 771

Netherlands

Norway

Poland

Portugal

Romania

Slovakia

Spain

Sweden

Switzerland

India	357	745
Lithuania	35	2 -00
Pakistan	65	
Turkey	173	
Ukraine	115	

ASSOCIATE	118				
MEMBERS IN	110				
THE PRE-STAGE					
TO MEMBERSHIP					
Cyprus	26				
Serbia	57				
Slovenia	35				

4		
89		
RS	OBSERVERS 2718 Japan 314 Russia 1187 USA 1217	
45	OTHERS 1872 Bolivia 4 Egypt 31 Kazakhstan 5 Mongolia 2 Philippines 3 Thailand Bosnia & Herzegovina 2 El Salvador 1 Kenya 3 Montenegro 11 Saint Kitts T.F.Y.R.O.M. Afghanistan 1 Brazil 135 Estonia 15 Korea Rep. 185 Morocco 20 and Nevis 1 Tunisia Albania 3 Burundi 1 Georgia 46 Kyrgyzstan 1 Myanmar 1 Saudi Arabia 2 Uruguay	1. 22 5

OTHERS	1872	Bolivia	4	Egypt	31	Kazakhstan	5	Mongolia	2	Philippines Saint Kitts	3	Thailand	22
		Bosnia & Herzegovina		El Salvador	1	Kenya		Montenegro	11			T.F.Y.R.O.M.	
Afghanistan	1	Brazil	135	Estonia	15	Korea Rep.	185	Morocco	20	and Nevis	1	Tunisia	5
Albania	3	Burundi	1	Georgia	46	Kyrgyzstan	1	Myanmar	1	Saudi Arabia	2	Uruguay	1
Algeria	14	Cameroon	1	Ghana	1	Latvia	2	Nepal	10	Senegal	1	Uzbekistan	4
Argentina	27	Canada	161	Hong Kong	1	Lebanon	23	New Zealand	5	Singapore	4	Venezuela	10
Armenia	19	Chile	20	Iceland	3	Luxembourg	2	Nigeria	3	South Africa	56	Viet Nam	13
Australia	31	China	510	Indonesia	11	Madagascar	4	North Korea	1	Sri Lanka	6	Zambia	1
Azerbaijan	10	Colombia	45	Iran	51	Malaysia	15	Oman	3	Sudan	1	Zimbabwe	2
Bangladesh	11	Croatia	41	Iraq	1	Malta	9	Palestine (O.T.).	7	Swaziland	1		
Belarus	48	Cuba	12	Ireland	16	Mauritius	1	Paraguay	2	Syria	1		
Benin	1	Ecuador	6	Jordan	1	Mexico	82	Peru	7	Taiwan	51		

Democritus believed that all matter is made of indivisible elements, the atoms

JJ Thomson

Mendeleev's periodic table of elements (1869) – 80 different indivisible atoms

Discovery of the electron with cathode ray tube first elementary particle 1896

Thomson's plum pudding model (1904)

2011: 100-year anniversary from the introduction of Rutherford's atomic model

alpha scattering experiment Geiger – Marsden

Nucleus: most of the mass, positive charge; atom is mainly empty
Later on it was found that the nucleus consists of protons and neutrons

Ernest Rutherford

Il y a environ onze milliards de milliards d'atomes de fer dans un milligramme de fer !

Periodic system of elementary particles

ONLY elementary particles of the 1st generation exist in nature

Particles of the 2nd and 3rd generation decay to those of the 1st (lighter)
Observed in accelerator experiments and cosmic rays

All particles have their antiparticles (same mass, opposite electric charge)

Quark Confinement

Quarks can not exist free in nature They can only exist bound inside hadrons

baryons consisting of 3 quarks mesons consisting of a quark and an anti-quark

Baryons qqq and Antibaryons qqq
Baryons are fermionic hadrons.
These are a few of the many types of baryons.

These are a rew of the many types of baryons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
p	proton	uud	1	0.938	1/2		
p	antiproton	ūūd	-1	0.938	1/2		
n	neutron	udd	0	0.940	1/2		
Λ	lambda	uds	0	1.116	1/2		
Ω-	omega	SSS	-1	1.672	3/2		

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π+	pion	ud	+1	0.140	0
K-	kaon	sū	-1	0.494	0
ρ+	rho	ud	+1	0.776	1
\mathbf{B}^0	B-zero	d̄b	0	5.279	0
η_{c}	eta-c	сē	0	2.980	0

The forces in Nature

TYPE	INTENSITY OF FORCES (DECREASING ORDER)	BINDING PARTICLE (FIELD QUANTUM)	OCCURS IN:
STRONG NUCLEAR FORCE	~ 1	GLUONS (NO MASS)	ATOMIC NUCLEUS
ELECTRO -MAGNETIC FORCE	~ 10 ⁻³	PHOTONS (NO MASS)	ATOMIC SHELL ELECTROTECHNIQUE
WEAK NUCLEAR FORCE	~ 10 ⁻⁵	BOSONS Zº, W+, W- (HEAVY)	RADIOACTIVE BETA DESINTEGRATION
GRAVITATION	~ 10 ⁻³⁸	GRAVITONS (?)	HEAVENLY BODIES

CERN's mission: to provide accelerators for the experiments

LHC: The Large Hadron Collider

It collides beams of protons at an energy of 13 TeV (the highest energy in the world)

- Using the latest superconducting technologies, it operates at 271°C (1.9 degrees above absolute zero, colder than outer space)
- With its 27 km circumference, the LHC is the largest superconducting installation in the world.
- •It is installed 100 m below ground
- Protons go around the LHC 11500 times / second

4 big experiments are installed at LHC

ALICE: A Large Ion Collider Experiment

16 m x 16 m x 26 m 10 000 tons installed 56 m underground (@ point 2 of LHC)

13.7 billion years ago the universe was born from a Big Bang

Millionths of a second after the big bang, all matter is made of free quarks and gluons,

THE QUARK GLUON PLASMA

As the universe cools and expands, the quarks and gluons are "imprisoned" for ever inside hadrons: from these, only protons and neutrons remain today

Little Bang

By colliding lead nuclei at very high energies we recreate the conditions of density and temperature which existed fractions of a second after the Big Bang

The protons and neutrons which constitute the lead nuclei melt liberating the quarks and gluons which are bound inside them

A new state of matter is created: the QUARK GLUON PLASMA

By studying its properties

- We will understand better the processes which took place during the first fractions of a second in the life of the universe
- We will understand better the strong interaction and how the protons and neutrons acquire their mass

SUperSYmmetry (SUSY)

Symmetry between matter (elementary particles -> fermions) and forces (force carriers -> bosons)

To unify the forces
To solve problems in the Standard Model
(deviations in the Higgs mass)

The known world of Standard Model particles

quarks leptons

force carriers

The hypothetical world of SUSY particles

- squarks
- sleptons
- SUSY force carriers

Every particle with spin s has its supersymmetric partner with spin s-1/2

Quark (s=1/2) -> squark (s=0) Gluon (s=1) -> gluino (s=1/2)

