A Novel Multidimensional Search for Diboson Resonances and

Encoding Jet Substructure with a Deep Neural Network

PhD committee: Prof. Jesse Thaler (MIT) Dr. Andreas Hinzmann (HUU) Prof. Florencia Canelli (UZH) Prof. Ben Kilminster (UZH, advisor)

Thea Klæboe Årrestad

PhD defense, UZH March 14th 2019 University of Zurich

2015

CMS

The Large Hadron Collider First p-p collisions after 2 year long shutdown with twice the collision energy!

HCh

CERN Prévessin

ATLAS

ALICE

13 TeV total!6.5 TeV proton6.5 TeV proton

CMS Experiment at the LHC, CERN Data recorded: 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86

Why is the Higgs mass we MEASURED so much smaller (x10¹⁶) than the Higgs mass we CALCULATED

þe

9

Why is gravity 10,000,000, 000,000,000, 000,000,000, 000,000,000 weaker than the other forces*

Higgs presicion measurements

"Search for high-mass diboson resonances with boson-tagged jets"

ATLAS Collaboration

A **new particle** with a mass of 2 TeV? Compatible observations in ATLAS and CMS!

What could it be?

	10. arXiv:1506.07511 [pdf, other] hep-ph hep-ex doi 10.1103/PhysRevD.92.055030
	G221 Interpretations of the Diboson and Wh Excesses
	Authors: Yu Gao, Tathagata Ghosh, Kuver Sinha, Jiang-Hao Yu
11. arXiv:1507.00268 [pdf, other] hep-ph doi 10.1103/PhysRevD.92.095025	Submitted 17 November, 2015; v1 submitted 24 June, 2015; originally announced June 2015.
Simple non-Abelian extensions of the standard model gauge group and the diboson excesses at the LHC	Comments: 16 pages, 6 figures, revised version 2. With a 2.9 TeV Z' event observed in CMS, we updated our paper by discussing the possible 2.9 TeV Z' signature together with the 2 TeV W' excess
Authors: Oing-Hong Cao Bin Yan Dong-Ming Zhang	5. arXiv:1507.03098 [p
Submitted 27 November, 2015: v1 submitted 1 July, 2015: originally announced July 2015.	Journal ref: Phys. Rev. D 92, 055030 (2015)
Comments: Publish version; title changed as suggested by journal Editor	A scalar hint from the diboson excess?
Journal ref: Phys. Rev. D 92, 095025 (2015)	Authors: Giacomo Cacciapaglia, Aldo Deandrea, Michio Hashimoto
6. arXiv:1507.03553 [pdf, other] h	ep-ph doi 10.1155/2016/3279568 🖸
	cussions are clarified. References added. Matches publish
On the compatibility of the	diboson excess with a gg-initiated composite sector
1. arXiv:1506.06739 [pdf, ps, other] hep-ph hep-ex	
Triboson interpretations of the ATLAS diboson excess	other] hep-ph doi 10.1103/PhysRevD.92.055001
Authors I to Angles Seconder	the ATLAS Diboson Resonances
Authors: J. A. Aguilar-Saavedra	atsumi Nagata, Yuji Omura
Submitted 25 September, 2015; v1 submitted 22 June, 2015; originally announced June 2015.	5; v1 submitted 12 June, 2015; originally announced June 2015.
Comments: LaTeX 17 pages. v2: Enlarged discussion to address CMS WH excess. v3: Added disc , ar	cussion of diboson helicities. Final version to appear in JHEP es; version accepted for publication in Physical Review D
Internetations of the ATLAC Dihagan Anomaly	Report number: IPMU15-0083, FTPI-MINN-15/31
Interpretations of the ATLAS Diboson Anomaly	tensions of the subject of the subje
Authors: Kingman Cheung, Wai-Yee Keung, Po-Yan Tseng, Tzu-Chiang Yuan	Van Dong-Ming Zhang
Submitted 17 November, 2015; v1 submitted 19 June, 2015; originally announced June 2015.	submitted 1 July 2015; originally appounced July 2015
Comments: v4: match the published version; v3: 18 pages, 6 figures, change to leptophobic Z' model to take in	nto 1007/IHEP02(2016)084
new figure are added: correct the statement about the WH: references are also added	
Brosports for Spin 1 Bosopapeo Soarch at 12	ToV/LHC and the ATLAS Dibeson Excess
Prospects for Spin-T Resonance Search at 15	S TEV LHC and the ATLAS DIDOSON EXCess
Authors: Tomoniro Abe, Teppei Kitanara, Minoko M. Noji	
Submitted 22 January, 2016; v1 submitted 7 July, 2015; e 16, arX	Xiv:1604.03578 [pdf. other] hep-ph
7. arXiv:1507.04431 [pdf, ps, other] hep-ph hep-ex doi 10.1016/j.physl	arres here [pail energy mer ph
A	model for the LHC diboson excess
2 TeV Higgs boson and diboson excess at the LHC	
Authors: Chuan-Hung Chen, Takaaki Nomura Aut	thors: Manuel Buen-Abad, Andrew G. Cohen, Martin Schmaltz
Submitted 18 August, 2015; v1 submitted 15 July 2015; originally appropried July 2015	mitted 25 April 2016: v1 submitted 12 April 2016: originally appounded April 2016
Comments: 12 pages, 7 figure 12. arXiv:1507.00900 [pdf, other] hep-ph hep-ex 500	Shinced 25 April, 2010, VI Submitted 12 April, 2010, Originally announced April 2010.
Unitarity implications of <mark>diboson</mark> resonance Left	-Right Dark Matter 11. arXiv:1507.06018 [pdf, other] hep-ph
physics Author	$rac{rac}{rac}$ I ow Scale Composite Higgs Model and 1.8 \sim 2 TeV Diboson H
Authors: Giacomo Cacciapaglia, Mads T. Frandsen Submi	itted 5 December, 2017; v1 su
Submitted 3 July, 2015; originally announced July 2015. Comm	nents: Version 2: 26 pages, 8 fi Authors: Ligong Bian, Da Liu, Jing Shu
Journal ref: Phys. Rev. D 92, 055035 (2015)	Submitted 21 July, 2015; originally announced July 2015.
Juniur en 1135. Nev. D 52, 055055 (2015)	

Predicts: Heavy (~TeV) copies of SM particles: Z Signature: Z'→WW and W'→WZ

Partonic luminosity

Going from $8 \rightarrow 13$ TeV: partonic luminosity increases!

G_{Bulk}→WW/ZZ

mainly produced through gg fusion!

g on Balk V

V'→WW/WZ

mainly produced through **qq** annihilation

Same discovery potential as 8 TeV dataset with only 1/7th of 13 TeV data!

Thesis work: Diboson resonance searches at 13 TeV with CMS

- I : First search for diboson resonances at 13 TeV
- II : A new pileup-resistant, perturbative robust tagger
- III: A novel framework for multi-dimensional searches
- IV: Encoding jet substructure with a deep neural network

Signature: $X \rightarrow VV \rightarrow 4q$

Analysis strategy

1. Reconstruct two W/Z jets, discriminate them from the quark/gluon jet QCD background

Jet substructure methods

Jet substructure methods

Are there "subjets" \rightarrow n-subjettiness

arxiv:1011.22681 jet axis
→ small τ_1 2 jet axis
→ small τ_2 Probability of jet
having N subjets, τ_N → small τ_2 → small τ_2 - use ratio τ_2/τ_1

Jet substructure methods

W/Z-tagging:

 $65 \text{ GeV} < M_{pruned} < 105 \text{ GeV} + \tau_{21} < 0.45$

~55% efficiency at 1-2% mistag rate

Statistical interpretation

with "background-only" and "background + signal" function.

Background

described by smooth fit to data, yield is estimated from B comp. of best S+B fit

Observed events in bin n_i

Results

Just exclude 2 TeV excess for W' \rightarrow WZ! However, other signals far from excluded

Thesis work: Diboson resonance searches at 13 TeV with CMS

- I : First search for diboson resonances at 13 TeV
- II : A new pileup-resistant, perturbative robust tagger
- III: A novel framework for multi-dimensional searches
- IV: Encoding jet substructure with a deep neural network

New jet mass algorithm: Softdrop

Pruning has <u>"non-global logarithmic terms"</u> in mass \rightarrow not "<u>perturbatively</u> robust". Softdrop has no such terms.

- can be calculated to higher precision than what is possible for other groomed or plain jet mass variables

However, softdrop mass for W jets highly p_T dependent:

Pileup

Never only ~1 pp collision per event, but several!

Pileup

Pileup in 2016 double that of 2015!

Fortunately, PileUp Per Particle Identification (PUPPI)

- CHS (old): remove charged particles not associated with primary vertex
- PUPPI (new): probability for ANY particle (neutral+charged) to be from pileup, reweights each accordingly

Huge resolution improvement for jet observables in large-cone jets

Tagger based on PUPPI and softdrop!

26

Developing a new V-tagger: Softdrop jet mass corrections

How does PUPPI softdrop look??

- p_T-dependence still present!

Solution: Compute dedicated PUPPI softdrop jet mass corrections!

- remove p_T/η -dependence, shift mass to 80 GeV

(Aside: not a problem with softdrop algorithm, must develop dedicated sc⁺⁺ jet corrections!) osition (GeV)

90

85

CMS

Developing a new V-tagger: Data/simulation corrections

To account for inaccurate modelling in

b

Semi-leptonic tt

Developing a new V-tagger: Performance

PUPPI softdrop also better performance than CHS pruning for the expected pileup in 2016. CHS pruning 15% higher mistag rate than PUPPI softdrop!

Results

What could we be missing?

Signals could still be present in our data, but may look different!

→ Idea: Lets make a **generic framework** allowing us to easily scan full jet mass and dijet invariant mass spectrum!

Thesis work: Diboson resonance searches at 13 TeV with CMS

- I : First search for diboson resonances at 13 TeV
- II : A new pileup-resistant, perturbative robust tagger
- III: A novel framework for multi-dimensional searches
- IV: Encoding jet substructure with a deep neural network

3D fit strategy

Take advantage of the fact that signal is resonant in 3D: $M_V,\,M_V$ and M_{VV}

- scan M_{V1} - M_{V2} - M_{VV} hyperplane!

Building PDFs

4 ingredients to full 3D model, derived from MC

- 1. Signal 3D PDF
 - Resonant in x, y and z
- 2. Non-resonant background
 - QCD, main background
 - Non-resonant in x, y and z

- 3. <u>Resonant background</u>
 - W/Z+jets, resonant in x+y
- 4. Alternate PDFs
 - 5 additional shape uncertainties

Alternative shapes

Is Nature Herwig++, MadGraph or Pythia? LO(Pythia) or NLO (Powheg)?

- predictions disagree, let's allow it to be all!

Add alternate shapes based on different MC

- large pre-fit uncertainties, fit can adjust to match data

First results with 3D fit

First results with 3D fit

Comparison to old method

3D fit method yields 20-30% improvement with respect to 1D search! Adding 2017 data yields ~40% performance improvement

Comparison to ATLAS

Up to 35% better than ATLAS equivalent search!

Next steps

For full 13 TeV dataset of 150 fb⁻¹:

VV, VH(bb) + HH in one single analysis!

Future plans

Going further, important to improve analysis sensitivity as no more C-O-M energy increase (after 14 TeV)

- need better taggers

- how to stay model-independent to look for any signal?
- need tagger that "knows" what substructure looks like

VS.

Thesis work: Diboson resonance searches at 13 TeV with CMS

- I : First search for diboson resonances at 13 TeV
- II : A new pileup-resistant, perturbative robust tagger
- III: A novel framework for multi-dimensional searches
- IV: Encoding jet substructure with a deep neural network

LoLa: DNN for W-tagging

Physics-based deep neural network to discriminate q/g from W jets (introduced for top tagging by G. Kasieczka et. Al)

- only inputs are jet constituent 4-vectors!

Custom layers

Custom layers

$$5 (\#CoLa) \times 7 (\#LoLa) \text{ matrix!}$$

$$E^{1} + E^{2} P_{x}^{1} + E^{2} P_{x}^{1} P_{x}^{1} + W_{2,4} P_{x}^{2} P_{x}^{2} W_{1,4} P_{x}^{1} + w_{2,4} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,4} P_{x}^{1} + w_{2,4} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,4} P_{x}^{1} + w_{2,4} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,4} P_{x}^{1} + w_{2,4} P_{x}^{2} W_{1,5} P_{x}^{1} + w_{2,5} P_{x}^{2} W_{1,5} P_{$$

Performance

55% signal efficiency per jet increase compared to τ_{21} at given mistag rate

 for analysis requiring 2 tagged jets → 2*x signal efficiency!

Could lead to large improvement in sensitivity for future VV analyses!

Train and use as "generic" anti-q/g tagger in the future?!*

*https://arxiv.org/abs/1808.08979

Summary & outlook

PhD defense

Summary & outlook

Not presented today!

DOL_10_1007 / IHEP03(2017)162

Ś

:a

orithm

+pruning

oust tagger

021; CMS-PAS-JME-16-003

• I : First search for diboson resonances at 13 TeV

55 < m_{iet1} < 215 GeV

1126 < m., < 5500 GeV

1800

1600

1400

1200

1000

800

600

400

200

(n n + m)

Total background

■G_{bulk} (2.0 TeV) → WW

HPLP category

′Softdrop m_____ iet? [GeV]

-W(qq)+jets

-Z(qq)+jets

± 1σ unc.

150

- Data

- Double Higgs taggi
- W-tag scale factor
- Study of CHS softd
- II: A new pileup Published in PRD, D(
 - W-tag scalefactors
 - Study of other tagg
 - CMS tracker offline
- III: A novel framework for multi-dimensional searches

100

In progress. To be submitted to The European Physical Journal C

- W-tag scalefactors for 2017 data (two taggers)
- Measurement of W-tag $\ensuremath{p_{\text{T}}}\xspace$ dependence, jet mass scale and resolution
- Barrel pixel gain calibrations for 2018 data taking
- IV: Encoding jet substructure with a deep neural network *Work in progress.*

Backup

3D fit

Analysis strategy

Select two high-p⊤ AK8 jets, |Δη_{jj}| < 1.3

- random sorting of m_{jet1} and m_{jet2} to avoid bias in jet mass shapes

Substructure: τ_{21}^{DDT} with two signal categories

- HPHP: jet₁ + jet₂ with $\tau_{21}^{DDT} < 0.43$:
- HPLP: jet_{1/2} with $\tau_{21}^{DDT} < 0.43$ jet_{2/1} with 0.43 < $\tau_{21}^{DDT} < 0.79$:

Bump hunt in mjj -mjet1-mjet2 mass plane

- 55 GeV < m_{jet} < 215 GeV (limited by PF reco)
- 1126 GeV < m_{jj} < 5.5 TeV (trigger-limited, see later)

Trigger turn-on

Combination of HT/substructure triggers

- AK8PFJet500 (pT 450 in 2016)
- AK8PFHT*_TrimMass50 (Trim 30 in 2016)
- PFHT1050 (HT 800 on 2016)

Evaluated in unbiased Single Muon dataset with reference triggers: IsoMu27 or Mu50

Trigger fully efficient at

- m_{jj} > 990 GeV (2016)
- m_{jj} > 1126 GeV (2017)

Sets analysis threshold at 1126 GeV

Decorrelating τ_{21}

To improve statistical power of τ_{21} , <u>decorrelate</u> from softdrop mass/p_T

Fit linear part of $\rho' = m^2/(p_T*1 \text{ GeV})$ vs. τ_{21} in QCD MC

$$\tau_{21}^{DDT} = \tau_{21} + 0.080 \times \log\left(\frac{m^2}{p_T \times 1 \text{ GeV}}\right)$$

Working point optimised for

- HP: highest Punzi significance
- LP: contain >95% of signal + highest significance

Extremely tight due to high background

- compared to default W-tagger (τ_{21} <0.35) ϵ_s 50% lower, background reduced by 90%

Tau21DDT

Controlplots in 16+17 data

2016 versus 2017

Similar spectra in 2016 vs. 2017, ~15-20% higher yield in 2017 dataset

Signal modelling

Templates are product of resonance mass and jet mass shapes (m_j/m_{jj} uncorrelated)

Fit softdrop jet mass and dijet mass with double CB, parametrise as function of m_x

Signal modelling

Mean and width stable due to decorrelated τ_{21}

Yield from integral of m_{VV} histogram

- parametrised as a function of m_x for smooth signal efficiency versus p_T
- efficiency lower at edges due to bin edge cut off
- lower signal efficiency in HP, but background strongly reduced

Signal 2016 versus 2017

Non-resonant background

To account for correlations m_{jet}/m_{jj}, non-resonant background modelled conditionally

Finally, interpolate histogram such that no bins are empty \rightarrow full, smooth shape

Defining Gaussian kernel

In bins of gen jet p_T , derive jet mass scale and resolution from Gaussian fit to $M_j(reco)/M_j(gen)$

Resonant background

fit resonant part of M_{jet} with signal function \Rightarrow fully correlated systematics model QCD-jet with simple Gaussian

$$M_{ii}$$
 shape, same kernel approach as for QCD

two contribution in final fit: Z+jets and W+jets plus $t\overline{t}$

two p_T dependent corrections applied to V+jets background:

- NLO-kfactor: correction p_T distribution of LO sample to NLO
- electroweak correction: for higher order electroweak processes

Uncertainties

Source	Relevant quantity	HPHP unc. (%)	HPLP unc. (%)
PDFs	Signal yield	3	
W-tagging efficiency	Signal+ V+jets yield	25 (21)	13 (11)
W-tagging <i>p</i> _T -dependence	Signal+ V+jets yield	8-23	9-25
Integrated luminosity	Signal+ V+jets yield	2.3 (2.6)	
QCD normalisation	Background yield	50	
V+jets normalisation	Background yield	10	
V+jets ratio	Migration	10	
PDFs	Signal M_{VV}/M_i mean and width	< 1	
Jet energy scale	Signal M _{VV} mean	2	
Jet energy resolution	Signal M_{VV} width	5	
Jet mass scale	Signal + V+jets M _j mean	1	
Jet mass resolution	Signal + V+jets M_j width	8	
QCD HERWIG++	QCD shape	-	-
QCD MADGRAPH+PYTHIA8	QCD shape	_	
$p_{\rm T}$ -variations	QCD shape	_	
Scale-variations	QCD shape	_	
High- <i>M_j</i> turn-on	QCD shape	-	-
<i>p</i> _T -variations	V+jets M_{VV} shape	_	-

W-tagging scalefactors

2016				
	m [GeV]	σ [GeV]	W-tag efficiency	
$ au_{21}^{DDT} < 0.43$				
Data	82.0± 0.5 (stat.)	7.1 ± 0.5 (stat.)	0.080 ± 0.008 (stat.)	
Simulation	80.9 ± 0.2 (stat.)	6.6 ± 0.2 (stat.)	0.085 ± 0.003 (stat.)	
Data/simulation	1.014 ± 0.007 (stat.+sys.)	1.09 ± 0.09 (stat.+sys.)	0.94 ± 0.10 (stat.+sys.)	
$0.43 < \tau_{21}^{DDT} < 0.79$				
Data		77	0.920 ± 0.008 (stat.)	
Simulation			0.915 ± 0.003 (stat.)	
Data/simulation	/		1.006 ± 0.009 (stat.+sys.)	
2017				
$\tau_{21}^{DDT} < 0.43$				
Data	80.8± 0.4 (stat.)	7.7 ± 0.4 (stat.)	0.060 ± 0.006 (stat.)	
Simulation	82.2± 0.3 (stat.)	7.1 ± 0.3 (stat.)	0.070 ± 0.005 (stat.)	
Data/simulation	0.983 ± 0.007 (stat.+sys.)	1.08 ± 0.08 (stat.+sys.)	0.96 ± 0.12 (stat.+sys.)	
$0.43 < \tau_{21}^{DDT} < 0.79$				
Data			0.935 ± 0.006 (stat.)	
Simulation			0.932 ± 0.005 (stat.)	
Data/simulation		> ~	1.003 ± 0.008 (stat.+sys.)	

Impacts

GOF

Limits

Limits set on 4 different signal hypothesis

Expect to exclude

- W' →WZ: up to 3.8 TeV
- Z' → WW: up to 3.6 TeV
- Approaching G_{Bulk} (k̃=0.5)

Thea K. Aarrestad

Limits

HPHP versus HPLP

- HPHP dominate at low masses, while HPLP dominate at high

Loose DDT postfit

Figure 33: Comparison between QCD MC simulation (markers) and kernels derived from generator level quantities (lines) in the HPHP category, using a looser cut on τ_{21}^{DDT} .

To validate kernel transfer method, we check that we can fit a higher-statistics $_{387}$ HPHP region by loosening the τ^{DDT} cut to 0.49. Results in 12 times more background

Kernels: validation in MC

Several MC checks performed to validate kernels. Use kernel produced with nominal Pythia8 MC as starting point and fit pseudo data generated under

- Herwig check kernels can account for variations in showering
- MadGraph check kernels can account for variations in matrix elemenent
- Powheg NLO check kernels can account for variations in perturbative predictions

Detector resolution

gen-p_T bins = [200,250,300,350,400,450,500,600,700,800,900,1000,1500,2000,2700,3500,5000]

Comparisons

3D limits

3D: 16 vs 17

With/without JER

Search I

Trigger and dijet mass cut

- Background estimate depends on smoothly falling M_{ii} spectrum
 - Start analysis where trigger efficiency > 99%
- Combination of HT + substructure based triggers ullet
 - AK8PFJet360_TrimMass30
 - AK8PFHT700_TrimR0p1PT0p03Mass50
 - PFHT650 WideJetMJJ900DEtaJJ1p5
 - PFHT800
- > 99% efficient for: ullet
 - Single-tag : $M_{ii} > 986 \text{ GeV} \rightarrow \text{start}$ at 990 GeV
 - Double-tag: $M_{ii} > 955 \text{ GeV} \rightarrow \text{start}$ at 955 GeV
- For control plots, require Mjj > 1020 GeV ullet(no jet mass cut applied, higher turn-on)

1.2

Mass correction for PUPPI softdrop mass

Generator level correction

- p_T-dependent shift in softdrop mass introduced at generator level
- Correct for this jet mass shift (JMS) effect by fit to $M_{PDG=80.4 \text{ GeV}} / M_{gen}$
- Reconstruction level correction
 - After applying corrections above, (M_{reco}-M_{gen})/M_{reco} jet mass shift is a 5-15% effect
 - Correct for residual effect by fit to $M_{\text{gen}}/M_{\text{reco}}$
- Residual data/MC correction due to detector effects estimated in semi-leptonic tt (see slide 11)
- Potential difference due to simulation of tt topology accounted for as systematic uncertainty by comparing Pythia8+Powheg(NLO) with Pythia8+Madgraph(LO)

Closure test

- After mass corrections applied, mass stable as a function of p_T around 80 GeV
- Work for Z and H as well
- Additionally validated in semileptonic tt
 - jet mass scale and resolution close to unity (see next slide)

W-tagging scalefactor and jet mass scale

- Estimated in merged W-jet enriched sample in semi-leptonic tt (p_T~200 GeV):
 - Simultaneous fit in pass ($\tau_{21} \leq 0.4$) and fail — $(\tau_{21} > 0.4)$ category for data and MC
 - Extract W-tagging efficiency as integral of Gaussian fit component \rightarrow data/MC efficiency yields SF
 - Jet mass scale/resolution from Gaussian mean and width
- Jet mass resolution used to smear MC and additionally inserted as systematic uncertainties (scaling up/down within unc.)
- Scalefactor inserted as scale of signal yield and as systematic uncertainty N^{pass} $N_{\rm W} \cdot \epsilon_{HP} f_{\rm pass}^{\rm sig}(m_j) + N_2 \cdot f_{\rm pass}^{\rm bkg}(m_j) + N_{\rm pass}^{\rm sTop} \cdot f_{\rm pass}^{\rm sTop} + N_{\rm pass}^{\rm VV} \cdot f_{\rm pass}^{\rm VV} + N_{\rm pass}^{\rm wjet}$ $f_{\rm pass}^{\rm wjet}$ $L_{\rm pass} =$ Further documentation here $f_{\text{fail}}^{\text{sig}}(m_j) + N_3 \cdot f_{\text{fail}}^{\text{bkg}}(m_j) + N_{\text{fail}}^{\text{sTop}} \cdot f_{\text{fail}}^{\text{sTop}} + N_{\text{fail}}^{\text{VV}} \cdot f_{\text{fail}}^{\text{VV}} + N_{\text{fail}}^{\text{wjet}} \cdot f_{\text{fail}}^{\text{wjet}}$ $L_{\text{fail}} = \prod |N_{\text{W}} \cdot (1)|$ $\epsilon_{HP})$ ϵ_{HP} (Data $\epsilon_{HP}(MC)$

Yields+shape fixed from MC

Mass and purity categorisation

• Mass categories:

- To enhance sensitivity, split mass window

- 5 mass categories: WW/ZZ/WZ and qW/qZ:
 - Combined into one VV/qV limit ~ slight gain in sensitivity
 - Expect more events in WZ channel for W'(→WZ) than G_{Bulk}(→WW/ZZ)

• <u>N-subjettiness categories:</u>

- Two categories:
 - High-purity: PUPPI $\tau_{21} \le 0.4$ (best S/B)
 - Low-purity: $0.4 < PUPPI \tau_{21} \le 0.75$ (enhance sensitivity at high M_X)
- All categories combined for final limits

Double-tag: WW

12.9 fb⁻¹ (13 TeV) WW category, HP (10² 10² 10² 10¹ 10¹ 10¹ **Tested fit functions:** CMS + CMS data χ^2 Residuals ndof Function Preliminary - 2 par. (χ^2 /ndof = 17.67/16) 0.251 17.673 16 2 par - 2 par: $\frac{dN}{dm} = \frac{P_0}{(m/\sqrt{s})^{P_2}}$ ----- 3 par. (χ^2 /ndof = 14.86/15) 0.187 14.863 15 3 par 14.618 14 4 par 0.183 1 5.454 CL - 3 par: $\frac{dN}{dm} = \frac{P_0(1-m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}}$ Fishers23 0.033 CL 0.541 Fishers34 0.391 10⁻¹ 4 par: $\frac{dN}{dm} = \frac{P_0(1-m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2+P_3 \times \log(m/\sqrt{s})}}$ 10⁻² - Alt.: $\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s} + P_3(m/\sqrt{s})^2)^{P_1}}{(m/\sqrt{s})^{P_2}}$ 10⁻³ Data-Fit σ 5- σ

E		•	
		-	(χ²/ndof = 14.62/14)
	- 	⊡ Alt. , 4	par. (χ²/ndof = 15.07/14)
WW category, H	IP		
E lηl ≤ 2.5, p _∓ > 20	0 GeV		
M _{ii} > 955 GeV, I∕	∆η _¦ I ≤ 1.3		
	· · · · · · · · · · · · · · · · · · ·	<u>· · <u> </u> · · · <u> </u></u>	
* * * * * * *		≑ = ≑ =_ ‡ _	* * *
1000	1500	2000	2500
			at invariant mass (CaV)

not	11100	anai	 u00	(uu	, v ,

12.9 fb⁻¹ (13 TeV)

WW category, LP				
Function	Residuals	χ^2	ndof	
2 par	2.974	13.997	23	
3 par	3.082	14.775	22	
4 par	3.080	14.768	21	
Fishers23	-0.805	CL 1	1.000	
Fishers34	0.015	CL ().905	

WW HP: 3 parameters WW LP: 2 parameters

Single-tag: qZ

 Higher order fit functions necessary for single-tag category (statistics higher, distributions more complex):

- 3 par:
$$\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}}$$

- 4 par: $\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \times \log(m/\sqrt{s})}}$

- 5 par:
$$\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \times \log(m/\sqrt{s}) + P_4 \times \log(m/\sqrt{s})^2}}$$

- Alt. 4:
$$\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s} + P_3(m/\sqrt{s})^2)^{P_1}}{(m/\sqrt{s})^{P_2}}$$

- Alt. 5:
$$\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s} + P_3(m/\sqrt{s})^2)^{P_1}}{(m/\sqrt{s})^{P_2 + P_4 \times \log(m/\sqrt{s})}}$$

qZ category, LP				
Function	Residuals	χ^2	ndof	
3 par	369.554	47.426	36	
4 par	369.554	47.426	35	
5 par	298.358	46.525	34	
Alt. 4 par	379.111	47.531	35	
Alt. 5 par	379.120	47.531	34	
Fishers34	0.000	CL	0.994	
Fishers45	8.352	CL	0.007	
FishersAlt4	Alt5 -0.001	CL	0.000	

qZ category, HP				
Function	Residuals	χ^2	ndof	
3 par	12.963	21.252	30	
4 par	12.961	21.252	29	
5 par	9.256	19.644	28	
Alt. 4 par	13.931	20.977	29	
Alt. 5 par	9.739	20.344	28	
Fishers34	0.004	CL	0.948	
Fishers45	11.609	CL	0.002	
FishersAlt4	Alt5 12.484	CL	0.001	

Dijet invariant mass (GeV)

Systematic uncertainties

- Main systematic uncertainties related to signal modelling
 - Tagging efficiency of W-tagging scalefactor (include statistical uncertainty, τ_{21} cut efficiency measurement, simulation of the tt topology and extrapolation to high p_T)
 - Jet energy/mass scale and resolution (uncertainties due to jet mass scale and resolution are evaluated by scaling the PUPPI softdrop jet mass up and down within uncertainties listed on slide 12
- Uncertainties related to jet mass and τ₂₁ are correlated among categories (e.g events migrating out of HP move into LP)

Source	Relevant quantity	HP+HP unc. (%)	HP+LP unc. (%)	
Jet energy scale	Resonance shape	2	2	
Jet energy resolution	Resonance shape	10	10	
Jet energy scale	Signal yield	<0.1-4.4		
Jet energy resolution	Signal yield	<0.1-1.1		
Jet mass scale	Signal yield	0.02–1.5		
Jet mass resolution	Signal yield	1.3–6.8		
Pileup	Signal yield	2		
Integrated luminosity	Signal yield	6.2		
PDF and scales (W' and Z')	Signal yield	2–18		
PDF and scales (G _{bulk})	Signal yield	8–78		
Jet mass scale	Migration	<0.1-16.8		
Jet mass resolution	Migration	<0.1–17.8		
W-tagging τ_{21}	Migration	15.6 21.9		
W-tagging $p_{\rm T}$ -dependence	Migration	7–14	5–11	

Double-tag: Background-only fits

Single-tag: Background-only fits

Signal interpolation

- Signal shape extracted from MC
 - P.D.F models constructed as composite models with Gaussian core and an exponential tail.
- Interpolated in steps of 100 GeV
- Hypothesis test by comparing fits of observed data with "backgroundonly"function and "background + signal" function.
- To ensure full containment of signal peak, setting limits for
 - Single-tag: 1.2 6.2 TeV
 - Double-tag: 1.1 4.2 TeV

Double-tag: HVT final limits

Single-tag: q* final limits

1D fitting procedure

Use binned maximum likelihood fit

$$L = \prod_{i} \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!} \quad \text{with} \qquad \mu_i = \sigma \cdot N_i(S) + N_i(B)$$

Background Ni(B) is described by smooth distribution

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}} \quad \bullet \quad \text{3 parameter fit} \\ \text{used in Run 1}$$

- Is function sufficient to describe background? F-test: Increase number of parameters until fit shows no significant improvement
 - Only estimates how many parameters are needed,
 NO parameters fixed
- In limit setting, **simultaneously** fit signal yield and background function
- While maximising likelihood as a function of resonance mass, µ and parameters of background function left floating
- Observed data compared with "background-only" function and "background + signal" function

F-test

- Compute residuals RSS (DATA fit) and DOF (nBins-nPar-1) for bins with bin content > 0 for each fit function
- If simpler fit function is correct: Relative increase in sum of squares = rel. increase in DOF

CL = 1 - Fdistr.Integral (0., F) → gives CL under null hypothesis of simpler function being sufficient. If CL > 10%: simpler function is sufficient

Tested functions

A. 3 parameter default fit functionA) $\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}}$ B. 2 parameterB) $\frac{dN}{dm} = \frac{P_0}{(m/\sqrt{s})^{P_2}}$ C. 4 parameterC) $\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \times \log(m/\sqrt{s})}}$ D. 5 parameterD) $\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \times \log(m/\sqrt{s})}}$

LoLa

The basic setup

Signal

- 320k fully merged hadronic W-jets (AK8) from W' \rightarrow WZ \rightarrow 4q (M_{W'} = 0.6-4.5 TeV)
- why small training set? → Do not mix signal samples until one is understood (can change with W polarisation etc.)

Background

- QCD Pythia8 non-W jets
- Danger: Jet substructure strongly depends on shower generators (different description of gluon radiation). Different QCD MC might yield different results

Disclaimer: The following contains student work in progress studies and not CMS approved results

Input

Four input features

Overall performance

Compare performance to most commonly used V-taggers

- Softdrop mass + au_{21}
- Softdrop mass + τ_{21}^{DDT} (mass/p_T decorrelated τ_{21})
- LoLa performs significantly better than current baseline
 - 20% higher ϵ_{S} at given ϵ_{B} compared to best cut-based
 - no need for mass window, increased signal acceptance

For two-W final state, 43% increase in signal efficiency for same mistag rate as current baseline (B2G-17-001)

Beyond performance

LoLa is naturally learning that p_{T} and mass are discriminating variables

 p_T -dependence is a problem because

- signal efficiency is variable, requires working point scaling with $\ensuremath{p_{\text{T}}}$
- p_T (tagger validation region) !=
 p_T (signal region)

Mass-dependence in itself not a problem, but could introduce large background rate uncertainties if using mass sidebands

- ultimately trade-off between efficiency and (analysis-dependent) systematics
- can not decide before checking in analysis

Output strongly correlated with mass/p_T

Coping with p_{T}

LoLa uses full jet- p_T range (> 200 GeV) in training and validation

 want tagger that offers discrimination where there is most background and W-boost not extreme (p_T < 600 GeV)

Reweight training set event-by-event to be flat in p_T -space

- passed as sample weights to training

Coping with p_T

Such strategies yields loss in overall performance, but reduced p_T -dependence

 a boost of statistics in extreme bins could improve performance for a p_Tweighted training

No "truth" for which solution is better before running full analysis including systematics for p_T -dependent tagging

0.0

500

Jet P_T (GeV)

1500

2000

2500

1000

Work in progress

Signal Discriminant

1.0

0.4

0.0

500

Jet P_T (GeV)

1000

1500

2000

2500

Mass sculpting

If you feed a DNN W-jet constituent 4-vectors it will inevitably learn W-mass

- good! Clearly W-mass != q/g-jet mass

Unfortunately, we often estimate background in mass sidebands

 bad! After cut on tagger, jet mass is sculpted making background spectrum difficult to constrain

Mass sculpting

50

At 1% mistag rate, see significant mass sculpting with LoLa

- bulk of remaining QCD jets after cut are in signal region

Hot topic in ML for jets: adversarial DNNs that penalise loss if mass is learned (nicely shown in <u>C. Shimmin et. Al</u>)

 loss in efficiency, but overall improvement due to reduced uncertainties when relying on mass-sidebands

Adversarial LoLa in progress, but best to offer both (for non-sideband based and sideband-based analyses)

- unconstrained, high-efficiency LoLa
- mass-decorrelated LoLa (adversarial)

200

250

300

150

Softdrop mass (GeV)

100

Universität

What does LoLa learn?

- Compare nominal training to training after removing variables sensitive to mass and p_{T}
- Remove CoLa column that passes sum of all 4-momentum ("jet" 4-vector)
 - not much impact on overall performance
 - not much information taken from LoLa "n-subjettiness"
- Remove Lola mass and p_T variables reduce performance significantly
 - worst when removing jet 4-vector, mass and $\ensuremath{p_{\text{T}}}$

What does LoLa learn?

Model

- 4 layer DNN doing supervised learning with fixed-size input vectors
 - feed forward sequential network
 - Two novel layers (CoLa and LoLa) implementing Minkowski metric and "substructure" calculations (see later) and two fully connected layers
- Technicalities
 - Keras with Theano backend (rewriting to Tensorflow)
 - Loss function: categorical crossentropy
 - ADAM optimiser (adapt learning rate of model parameters during training)
- Train 200k + Test 60k + Val 60k on AWS (CMS Christmas Wishlist: GPU cluster!)

Intro

What could it be?

With only 3 fb⁻¹ of 13 TeV data, same discovery potential as 8 TeV dataset of 20 fb⁻¹ Signature: $G_{Bulk} \rightarrow WW$ and $G_{Bulk} \rightarrow ZZ$ Signature: Z' $\rightarrow WW$ and W' $\rightarrow WZ$