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2015
 

First p-p collisions after 2 year long shutdown  
with twice the collision energy!

The Large Hadron Collider

6.5 TeV proton 6.5 TeV proton

13 TeV total!
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E=mc2
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Lightest:  
< 1 eV

top quark heaviest:  
172 GeV

Higgs:  
125 GeV

Masses span range O(109)! 
(1 GeV = 1 000 000 000 eV)
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Higgs

𝛾

𝛾

arxiv:1407.0558 

5.7σ

mH =

q
2E�1E�2(1– cos ✓�1�2)
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GGraviton

?

Why is gravity  
10,000,000,  

000,000,000,  
000,000,000,  
000,000,000, 

000,000  
weaker than the  

other forces* 

? 
*at high energies

Higgs   
presicion measurements

Search for physics   
beyond the standard model

Why is the 
Higgs mass we 

MEASURED 
so much 

smaller (x1016) 
than the Higgs 

mass we 
CALCULATED 

? 
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A new particle with a mass of 2 TeV?
Compatible observations in ATLAS and CMS!

“Search for high-mass diboson resonances with boson-tagged jets“
ATLAS  Collaboration
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What could it be?
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What could it be?

Our b
rane

Gravity
 brane

Gravity 
strong

Gravity 
weak

 
 
 

Warped Extra Dimensional theories           
 
 
 
 
 
 
 
 
 
 
 

 
Predicts:  

Heavy graviton resonances:  
Signature: GBulk→WW and GBulk→ZZ

Curved 5th space-time 
bounded by 

(3+1)-D branes 
 

Gravity “dilutes” 
through extra 

dimension

 
 
 

Composite Higgs models  
 
 

 

 
 
 
 

Predicts:  
Heavy (~TeV) copies of SM particles:  

Signature: Z’→WW  and W’→WZ

Like proton (which 
gets its mass from 

QCD),  
 

Higgs is composite 
and gets mass from 

new strong interaction

p

H

QCD 
𝝅+,𝝅-,𝝅0 
𝞺0→ 𝝅+ 𝝅- 

𝞺±→ 𝝅± 𝝅0 

Composite Higgs 
H, W, Z 

Z’ → WW 
W’ → WZ

Why 
is Higgs 

light?
GeV

TeV

Z W
t

top quark:  
172 GeV

Higgs:  
125 GeV

New  
physics

Why 
is gravity 

weak?

Why 
is Higgs 

light?
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Partonic luminosity

Same discovery potential as 8 TeV dataset with only 1/7th  of 13 TeV data!

mX Production 13/8 TeV signal yield 
increase2 TeV gg x 15

2 TeV qq x 8

GBulk→WW/ZZ 

mainly produced through gg fusion!

V’→WW/WZ 

mainly produced through q̄q annihilation

  8 x

more signal  
events at  
13 TeV!

Going from 8→13 TeV: partonic luminosity increases!

15 x

g

g

V

V
GBulk V’

q

q̄

V

V

gg fusion q̄q annih.
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Thesis work: 
Diboson resonance searches at 13 TeV with CMS 

• I  :  First search for diboson resonances at 13 TeV 

• II :  A new pileup-resistant, perturbative robust tagger 
• III:  A novel framework for multi-dimensional searches 
• IV: Encoding jet substructure with a deep neural network



jet

jetjet

jet

W� W+

q̄0

q

q̄0

q

Signature: X→VV→4q
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Due to high MX, W/Z are Lorentz-boosted  
→ quarks get merged into single large jet, 

dijet final state!

MX > 1 TeV

V=W/Z     X     V=W/Z
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Figure 5.11: The e↵ect of softdrop on a signal jet (left) and a background jet (right) for di↵erent
values of the tuned parameters �. � = 0 corresponds to the Modified Mass Drop Tagger, which is
the default Softdrop setting in CMS [42].

5.5.2 N-subjettiness

After using the algorithms above, there is still information in the jet structure itself that can

distinguish W/Z jets from quark/gluon jets. A W or Z jet consists of two well-defined high-pT

subjets. A quark/gluon jet instead is made from a single parton, and consists of several large

angle, asymmetric splittings, as illustrated in Figure 5.12. The N-subjettiness algorithm [46]
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Figure 5.12: A jet stemming from the decay of a W will usually have two well-separated high-pT

subjets, while a jet with a single-prong origin consists of several large angel splittings.

takes advantage of this fact by attempting to count the number of hard sub-elements within a jet.

This is quantified through the n-subjettiness variable, ⌧N , defined as

⌧N =
1

d0

X

k

pT,kmin(�R1,k, �R2,k..., �RN,k), (5.10)

where k runs over all the jet constituents, pT,k is the constituent transverse momentum, and

�Ri,k is the distance between the constituent and candidate subjet axes. These subjet axes are
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Figure5.11:Thee↵ectofsoftdroponasignaljet(left)andabackgroundjet(right)fordi↵erent
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thedefaultSoftdropsettinginCMS[42].

5.5.2N-subjettiness

Afterusingthealgorithmsabove,thereisstillinformationinthejetstructureitselfthatcan

distinguishW/Zjetsfromquark/gluonjets.AWorZjetconsistsoftwowell-definedhigh-pT

subjets.Aquark/gluonjetinsteadismadefromasingleparton,andconsistsofseverallarge

angle,asymmetricsplittings,asillustratedinFigure5.12.TheN-subjettinessalgorithm[46]
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Figure5.12:AjetstemmingfromthedecayofaWwillusuallyhavetwowell-separatedhigh-pT

subjets,whileajetwithasingle-prongoriginconsistsofseverallargeangelsplittings.

takesadvantageofthisfactbyattemptingtocountthenumberofhardsub-elementswithinajet.

Thisisquantifiedthroughthen-subjettinessvariable,⌧N,definedas

⌧N=
1

d0

X

k

pT,kmin(�R1,k,�R2,k...,�RN,k),(5.10)

wherekrunsoverallthejetconstituents,pT,kistheconstituenttransversemomentum,and

�Ri,kisthedistancebetweentheconstituentandcandidatesubjetaxes.Thesesubjetaxesare

Background

q            q

1. Reconstruct two W/Z jets, discriminate them from the quark/gluon jet QCD background 
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Analysis strategy

Dijet invariant mass

Signal resonant  
around MX 

Smooth QCD 
background  
from fit to data

78 Event reconstruction

 (GeV)gen-mrecom
-100 -80 -60 -40 -20 0 20 40 60 80 100

ar
bi

tra
ry

 u
ni

ts

0

2000

4000

6000

8000

10000

12000

 WW, Anti-kT (R=0.8) →RSGraviton 

>=40PU<n

 > 300 GeV
T

p

| < 2.5η|

PF + CHS with softdrop

13 TeVCMS Simulation Preliminary

=1β

RMS = 12.4 GeV
mean = -3.2 GeV

=0β

RMS = 14.8 GeV
mean = -3.4 GeV

=2β

RMS = 11.8 GeV
mean = -2.6 GeV

Ungroomed
RMS = 12.8 GeV
mean = -4.6 GeV

 (GeV)jetm
0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 to
 u

ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

=0.05
frac

=0.2,pTsubr

=0.03
frac

=0.1,pTsubr

=0.03
frac

=0.2,pTsubr

=0.03
frac

=0.3,pTsubr

ungroomed

CMSSimulation Preliminary 13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T

p
|< 2.5η |

> = 40PU<n PF+CHS with trimming

 (GeV)jetm
0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 to
 u

ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

=0.5
cut

=0.1,rcutz

=0.5
cut

=0.05,rcutz

=0.75
cut

=0.05,rcutz

=0.75
cut

=0.1,rcutz

ungroomed

CMSSimulation Preliminary 13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T

p
|< 2.5η |

> = 40PU<n PF+CHS with pruning

 (GeV)jetm
0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 to
 u

ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 = 2  β

 = 0  β

 = 1 β

ungroomed

CMSSimulation Preliminary 13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T

p
|< 2.5η |

> = 40PU<n PF+CHS with softdrop

Figure 5.11: The e↵ect of softdrop on a signal jet (left) and a background jet (right) for di↵erent
values of the tuned parameters �. � = 0 corresponds to the Modified Mass Drop Tagger, which is
the default Softdrop setting in CMS [42].

5.5.2 N-subjettiness

After using the algorithms above, there is still information in the jet structure itself that can

distinguish W/Z jets from quark/gluon jets. A W or Z jet consists of two well-defined high-pT

subjets. A quark/gluon jet instead is made from a single parton, and consists of several large

angle, asymmetric splittings, as illustrated in Figure 5.12. The N-subjettiness algorithm [46]
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Figure 5.12: A jet stemming from the decay of a W will usually have two well-separated high-pT

subjets, while a jet with a single-prong origin consists of several large angel splittings.

takes advantage of this fact by attempting to count the number of hard sub-elements within a jet.

This is quantified through the n-subjettiness variable, ⌧N , defined as

⌧N =
1

d0

X

k

pT,kmin(�R1,k, �R2,k..., �RN,k), (5.10)

where k runs over all the jet constituents, pT,k is the constituent transverse momentum, and

�Ri,k is the distance between the constituent and candidate subjet axes. These subjet axes are
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5.5.2N-subjettiness

Afterusingthealgorithmsabove,thereisstillinformationinthejetstructureitselfthatcan

distinguishW/Zjetsfromquark/gluonjets.AWorZjetconsistsoftwowell-definedhigh-pT

subjets.Aquark/gluonjetinsteadismadefromasingleparton,andconsistsofseverallarge

angle,asymmetricsplittings,asillustratedinFigure5.12.TheN-subjettinessalgorithm[46]

AK8
W�W+

q̄0

q

q̄0

q

AK8

W�
W+ q̄0

q

q̄0

q W�W+

q̄0

q

q̄0

q
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subjets,whileajetwithasingle-prongoriginconsistsofseverallargeangelsplittings.

takesadvantageofthisfactbyattemptingtocountthenumberofhardsub-elementswithinajet.

Thisisquantifiedthroughthen-subjettinessvariable,⌧N,definedas

⌧N=
1

d0

X

k

pT,kmin(�R1,k,�R2,k...,�RN,k),(5.10)

wherekrunsoverallthejetconstituents,pT,kistheconstituenttransversemomentum,and

�Ri,kisthedistancebetweentheconstituentandcandidatesubjetaxes.Thesesubjetaxesare

Signal

V=W/Z     X     V=W/Z

2. “Bump hunt” in dijet 
invariant mass 
spectrum 

- signal resonant, QCD 
smoothly falling

3. Estimate background 
from fit to data in 
signal region 

- smoothness test of 
observed data  
(no MC!)



Radiation?  
Substructure?

December 2013Jet Substructure

Boosted massive particles → fat jets

Normal analyses: two quarks from
X → qq̄ reconstructed as two jets

jet 1

jet 2

X at rest
X

High-pt regime: EW object X
is boosted, decay is collimated,

qq̄ both in same jet

single
fat jet

z

(1−z)

boosted X

Happens for pt ! 2m/R

pt ! 320 GeV for m = mW , R = 0.5

Gavin Salam (CERN/LPTHE/Princeton) Jets in Higgs Searches HC2012 2012-11-18 19 / 29

11

Most obvious way of 
detecting a boosted decay 

is through the mass of the jet 

But jet mass is 
poor in practice:

e.g., narrow W resonance
highly smeared by QCD 

radiation
(mainly underlying event/

pileup)
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Jet mass: the problems

• Have many QCD jets, some of 
them are massive too!


• HOW TO GET RID OF THEM?

W+jets QCD

Gavin Salam (CERN) Jets and jet substructure (4) TASI, June 2013 10
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QCD W

q/g jets also 
massive  
due to radiation!

How can we tell this 
 
 
 
 
 
 
 

- Mass = 80 GeV? 

- Two “subjets” of hard, collinear particles

from this  
 
 
 
 
 
 
 

- Mass ≃ 0 GeV? 

- Large blob of soft, diffuse radiation

Jet substructure methods
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Resolving jet substructure

22

W-jet signal
2 prong structure
mjet ~ mW 
~ 80 GeV

QCD jet background
large angle and 
soft emissions
mjet ~ mq ~ 0
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N-subjettiness
• pT-weighted sum over all jet constituents of 

the distance w.r.t the closest of N axes in a jet 
 
 

- Axis are obtained by undoing last (N-1) 
steps of jet clustering algorithm 

- Small !N indicates compatibility with N axes 
hypothesis 

• To discriminate 2-prong W/Z jets from  
1-prong q/g jets, use ratio:


- !2/!1 (!21)  

• To discriminate 3-prong top jets from  
1-prong or 2 prong jets, use ratio:


- !3/!1 (!31) or 

- !3/!2 (!32) 

Work in progress

Signal
QCD

Distance between momentum of  
constituent k w.r.t momentum of  
rest-frame subjet N

Each constituent assigned to nearest subjet!

!21 < 0.5

1 jet axis  
→ small 𝜏1  2 jet axis  

→ small 𝜏2

arxiv:1011.2268

Are there “subjets” → n-subjettinessJet mass resolution → Pruning
arxiv:0912.0033

Initial jet
Remove  

soft/wide-angle Pruned jet

C/A

pT1/pT12 < zcut or ΔR12 < Rcut

https://arxiv.org/abs/0912.0033
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Pruned mass (GeV)

W/Z-tagging:  
 

65 GeV < Mpruned < 105 GeV  
+ 

 𝜏21 < 0.45 
 

~55% efficiency  
at 1-2% mistag rate 



Ev
en

ts
 / 

( 0
.1

 T
eV

 )

1

10

210

310

410
data

3 parameter fit

=3)
V

(gBWZ, HVT→W'(2 TeV)

WZ, low-purity
 > 200 GeV

T
| < 2.4, pη|

| < 1.3
jj
η∆ > 1 TeV, |jjm

 (13 TeV)-12.7 fb

CMS

Dijet invariant mass (TeV)
1 1.5 2 2.5 3 3.5

da
ta

σ
D

at
a-

Fi
t

-2
0
2 J

H
E
P
0
3
(
2
0
1
7
)
1
6
2

Dijet invariant mass (TeV)

1 1.5 2 2.5 3 3.5 4 4.5 5

A
rb

itr
a
ry

 s
ca

le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 WZ (MADGRAPH)→W' 

 WW (MADGRAPH)→ BulkG

 ZZ (MADGRAPH)→ BulkG

 13 TeV

CMS
Simulation

 (TeV)+jetνlm
1 1.5 2 2.5 3 3.5 4 4.5

A
rb

itr
a
ry

 s
ca

le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 WZ (MADGRAPH)→W' 

 WW (MADGRAPH)→ bulkG

 WW (MADGRAPH)→Z' 

 13 TeV

CMS
Simulation

Figure 5. Dijet invariant mass (left) and mℓν+jet (right) distributions expected for different signal
mass hypotheses.

description of the signal, choosing a double-sided Crystal Ball (CB) function [67] (i.e.

a Gaussian core with power law tails on both sides) to describe the simulated resonance

distributions. A linear interpolation between a set of reference distributions (corresponding

to masses of 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, and 4.0TeV) is used

to estimate the expected distributions for intermediate values of resonance mass. Table 6

summarizes the overall event-selection efficiency for our chosen analysis channels and signal

models. All channels are used in the statistical analysis of each signal.

6 Systematic uncertainties

6.1 Systematic uncertainties in the background estimation

For the dijet analysis, the background estimation is obtained from a fit to the data. As such,

the only relevant uncertainty is the statistical one as represented by the covariance matrix of

the fit to the dijet function. Different parameterizations of the fitting function have been

studied, and the differences observed are well within the bounds of the aforementioned

uncertainty and are assumed to pose no additional contribution.

For the ℓν+jet analyses, uncertainties in both the distribution and normalization of the

background prediction can be important. The uncertainty in the distribution is dominated

by the statistical uncertainties in the simultaneous fits to the data of the sideband region,

and the simulation in signal and sideband regions. An effect of almost equal magnitude

is due to the uncertainties in the modelling of the transfer function α(mVV) between the

sideband and the signal region. The uncertainty in the normalization of the background

has three sources: the W+jets component, dominated by the statistical uncertainty of the

events in the pruned jet mass sideband, varying from 5 to 9%; the tt/single top quark

component, dominated by the scale factor obtained from the top quark enriched control

– 17 –
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Limits on signal strength σ by comparing fits of observed data  
with “background-only” and “background + signal" function. L =

Y

i

µni
i e�µi

ni!
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

µi = � ·Ni(S) +Ni(B)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Observed events in bin ni 

Signal PDF extracted  
from MC

Statistical interpretation

Background  
 

described by smooth 
fit to data, yield is 
estimated from B 

comp. of best S+B fit

ni
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Figure 1. Final mjj distributions for the dijet analysis in six signal regions. The high-purity (on
the left) and the low-purity (on the right) categories are shown for the WW (top row), WZ (central
row), and ZZ (bottom row) mjet regions. The solid curve represents a background-only fit to the
data distribution, where the filled red area corresponds to the ±1 standard deviation statistical un-
certainties of the fit. The data are represented by the black points. For the ZZ high-purity category
(bottom left), we also show the background-only fit using the two-parameter functional form (blue
solid line), for comparison. Signal benchmarks for a mass of 2TeV are also shown with black dashed
lines. In the lower panel of each plot, the bin-by-bin fit residuals, (Ndata −Nfit)/σdata, are shown.

– 13 –

No “bump”  
confirmed!

Just exclude 2 TeV excess for W’→WZ! However, other signals far from 
excluded
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Thesis work: 
Diboson resonance searches at 13 TeV with CMS 

• I  :  First search for diboson resonances at 13 TeV 

• II :  A new pileup-resistant, perturbative robust tagger 
• III:  A novel framework for multi-dimensional searches 
• IV: Encoding jet substructure with a deep neural network
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New jet mass algorithm: 
Softdrop
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Pruning has  "non-global logarithmic terms" in mass → not “perturbatively robust”. 
Softdrop has no such terms. 

- can be calculated to higher precision than what is possible for other groomed or 
plain jet mass variables

Softdrop (β=0)
arXiv:1307.0007  arxiv:1402.2657
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q
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q
After pruning: After softdrop:

Soft gluon radiating  
into jet not removed 

All soft radiation removed 
→ no “non-global logs”!

NGLNGL

http://xxx.lanl.gov/pdf/1307.0007v2
https://arxiv.org/abs/1307.0007
https://arxiv.org/pdf/1402.2657v2.pdf


However, softdrop mass for W jets highly pT dependent: 
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50 Diboson resonance searches in CMS
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Figure 5.9: The softdrop (dotted lines) and the pruned (solid lines) jet mass for W, Z and H jets.
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Figure 5.10: The jet mass distribution for W jets coming from a Gbulk of masses in the range
0.8TeV < MX < 4TeV decaying to WW, here with pruning applied (left) and softdrop (right). A
strong shift in the jet mass mean as a function of pT (⇠ MX/2), is observed for jets groomed with the
softdrop algorithm. Charge hadron subtraction is applied to all jets before clustering.

shows the reconstructed (solid line) and generator level (dotted line) jet mass distributions
after pruning (left) or softdrop (right) have been applied. Again, the distributions are
compared for jets with very di↵erent pT profiles, here for W jets coming from a Gbulk ! WW
of mass MX = 0.8TeV (red), roughly pT ⇠ 400GeV, and MX = 2.0TeV (blue), pT ⇠ 1TeV.
Interestingly, we observe a pT-dependent mass shift already for generator level softdrop jets
(comparing the dotted lines in the right plot); an e↵ect further enhanced at reconstruction
level. This e↵ect is not present for pruned jets, neither at generator level nor reconstruction
level.

The observed softdrop mass pT-dependence was problematic, due to the fact that it would
require a pT dependent mass window. This would again require several di↵erent measurements

Pruned jet mass (GeV)

Decreasing jet pT

Softdrop jet mass (GeV)

Pruned jet mass  
for W jets

pT-binned

Softdrop jet mass  
for W jets

pT-binned

Problems with softdrop



Never only ~1 pp collision per event, but several!

p-p interactions

associated tracks

Pileup
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~O(10 cm)



Pileup in 2016 double that of 2015! 

 
 
Fortunately,  
PileUp Per Particle Identification (PUPPI)  

- CHS (old): remove charged particles not 
associated with primary vertex 

- PUPPI (new): probability for ANY particle 
(neutral+charged) to be from pileup, 
reweights each accordingly 

Huge resolution improvement for jet 
observables in large-cone jets 

Tagger based on PUPPI and softdrop!

28 Event reconstruction

Figure 4.4: The mass (top) and pT (bottom) resolution comparing PF only (blue), PF+CHS (red)
and PUPPI (pink) jets. The absolute resolution (left) as well as the resolution as a function of the
number of reconstructed primary vertices in the event (right)is shown [16].

4.4.1 Jet clustering

The most common jet clustering algorithms used in hadron colliders are the Cambridge/Aachen
algorithm [17], the kT algorithm [18] and the anti-kT algorithm [19]. These are all sequential
recombination algorithms, meaning they systematically go through each particle pair in the
event and recombines them into one particle if the combination satisfies certain criteria. The
rules, shared by all three algorithms, are as follows:

1. For each pair of particles i and j, compute the longitudinally invariant distances

dij = min(p2p
ti , p2p

tj )
�R2

ij

R2
, with �R2

ij = (⌘i � ⌘j)
2 + (�i � �j)

2 (4.4)

diB = p2p
ti , (4.5)

where dij is a measure of the relative transverse momenta between the particles, �R2
ij

is the distance between them in the ⌘ � � plane (which can be roughly translated into
a jet radius), �R2 corresponds to a distance parameter which controls the extension
of the jet and diB is the distance between the particle and the beam. The parameter
p is what separates the three algorithms from one another and controls the relative
power of energy versus geometrical scales. For the anti-kT algorithm, it is defined as
p = �1, for the kT algorithm p = 1 and in the case of the C/A algorithm, p = 0. The
consequences of these choices are explained in detail below.

2. Find the minimum distance of dij and diB.

3. If this is dij , recombine particles i and j and return to step 1.

Jet mass resolution

PUPPI

CHS
no PU  

removal

CMS PU and integrated luminosity

CMS recorded 150.5 fb-1 in Run 2, 
with an overall efficiency of 92.5%

RC WGM 38125/10/2018 5

Pileup
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https://arxiv.org/abs/1407.6013


Developing a new V-tagger:  
Softdrop jet mass corrections
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How does PUPPI softdrop look?? 

- pT-dependence still present!  

Solution: Compute dedicated PUPPI 
softdrop jet mass corrections! 

- remove pT/η-dependence,  
shift mass to 80 GeV  

Finally stable softdrop mass peak with pT 

(Aside: not a problem with softdrop 
algorithm, must develop dedicated softdrop 
jet corrections!)

QCD
W Z

High-pT 

Low-pT
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Figure 5.34: The mean of a Gaussian fit to the W-jet PUPPI softdrop mass peak as a function of
jet pT in two di↵erent ⌘ bins (smaller or greater than |⌘| = 1.3). No corrections have been applied to
the softdrop mass.
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Figure 5.35: The mean of the fitted generator level W-jet softdrop mass distribution as a function
of jet pT (left) and the normalized di↵erence in reconstructed and generated softdrop mass (right).
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Figure 5.38: The W/Z/H-jet corrected PUPPI softdrop mass peak for jets from di↵erent signal
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To account for inaccurate modelling in 
simulation 

evaluate data/MC differences in tagging 
efficiency (εs), jet mass scale and resolution 

Important!  
Affects the estimated  
signal yield in all  
analyses using  
W-tagging!
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Developing a new V-tagger:  
Data/simulation corrections

Semi-leptonic tt̄
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Figure 7. An MC study of the impact of hadronisation and underlying event (UE) on the signal e�-
ciency for pruning (left) and mMDT (right) (zcut, ycut = 0.1) as a function of jet transverse momentum
with �M = 16GeV. Details of generation are given in Fig. 2.

of �
(0)
S = 0.8, at high pT one sees a roughly 10 percent di↵erence for the full parton level result

with radiative corrections. One also sees a remarkable similarity between the two taggers

over the entire pT range as far as parton level results and those including hadronisation

are concerned. The UE contamination is however more clearly visible in the mMDT case

towards lower pT values which owes to the larger e↵ective radius ✓bb̄ = M
H

p
T

p
z(1�z)

as compared

to Rprune ⇡ MH/pT for pruning as well as di↵erences in the definitions of the asymmetry

parameters ycut vs zcut.7

At lower pT therefore it has been standard practice to use the mass drop tagger in

conjunction with filtering as suggested in the original reference Ref. [3]. One should also

bear in mind the results of Ref. [31] where for QCD background jets much more pronounced

non-perturbative e↵ects were observed for pruning than for mMDT, and in the final analysis

one expects the impact on the background to dictate the ultimate performance of the taggers,

rather than the comparatively small corrections one sees here for the signal, over most of the

pT range studied.

A final point to make about Fig. 7 is about the contrast between the FSR corrections

observed for mMDT and pruning to those seen in Fig. 6 for trimming. To make the comparison

we note the fact that for Fig. 6 we have chosen fcut = 0.1 and consider Rtrim = 0.1. Then the

zeroth order result for trimming is simply 1� 2fcut as for mMDT and pruning, within the pT

range we are studying. It is evident from Figs. 6 and 7 that while the FSR results for mMDT

7It is of course possible to use mMDT with a zcut constraint defined as for pruning instead of ycut, as was

studied in Ref. [31]. This choice would further enhance the similarity we observe for signal jets and is the

default in the current public implementation of mMDT in FastJet [50].
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Figure 5.27: The signal e�ciency for pruning (left) and softdrop (right) as a function of jet pT when
adding FSR, ISR, hadronization and UE. THe UE has a severe impact on the softdrop e�ciency for
signal jets [47].

terms of jet observables for large radius jets, and therefore seemed like the obvious choice
to address both issues listed above: The sensitivity of softdrop regarding UE contamination
and the strong pileup dependence of ⌧21. The focus of Search II would therefore be on the
commissioning of a novel W-tagger. There are interesting changes and inclusions in the
analysis strategy as well: The inclusion of a Z0 ! WW signal hypothesis and the addition of
a completely new analysis, the single V-tag analysis.

5.2.2 Analysis strategy

The analysis strategy for this search is conceptually the same as for Search I. In addition,
we’ll take advantage of the n-subjettiness categorization and do an additional analysis in
parallel: A search for excited quark resonances q⇤ [48, 49] decaying to qW or qZ. We call
this the single V-tag analysis, and the analysis selection only di↵ers in that one jet is not
required to pass the V-tag selection (groomed mass and n-subjettiness). The VV analysis is
hereby referred to as the double V-tag analysis. The di↵erence between the two analyses is
illustrated in Figure 5.28. In addition, limits are set on a Z0 ! WW signal hypothesis in the
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Figure 5.28: The double (top) and single (bottom) W/Z-tag analysis.

Adding search for excited quarks  
decaying to qV by removing W-tag. 

Never before analysed channel at 13 TeV!
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Figure 7. An MC study of the impact of hadronisation and underlying event (UE) on the signal e�-
ciency for pruning (left) and mMDT (right) (zcut, ycut = 0.1) as a function of jet transverse momentum
with �M = 16GeV. Details of generation are given in Fig. 2.

of �
(0)
S = 0.8, at high pT one sees a roughly 10 percent di↵erence for the full parton level result

with radiative corrections. One also sees a remarkable similarity between the two taggers

over the entire pT range as far as parton level results and those including hadronisation

are concerned. The UE contamination is however more clearly visible in the mMDT case

towards lower pT values which owes to the larger e↵ective radius ✓bb̄ = M
H

p
T

p
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as compared

to Rprune ⇡ MH/pT for pruning as well as di↵erences in the definitions of the asymmetry

parameters ycut vs zcut.7

At lower pT therefore it has been standard practice to use the mass drop tagger in

conjunction with filtering as suggested in the original reference Ref. [3]. One should also

bear in mind the results of Ref. [31] where for QCD background jets much more pronounced

non-perturbative e↵ects were observed for pruning than for mMDT, and in the final analysis

one expects the impact on the background to dictate the ultimate performance of the taggers,

rather than the comparatively small corrections one sees here for the signal, over most of the

pT range studied.

A final point to make about Fig. 7 is about the contrast between the FSR corrections

observed for mMDT and pruning to those seen in Fig. 6 for trimming. To make the comparison

we note the fact that for Fig. 6 we have chosen fcut = 0.1 and consider Rtrim = 0.1. Then the

zeroth order result for trimming is simply 1� 2fcut as for mMDT and pruning, within the pT

range we are studying. It is evident from Figs. 6 and 7 that while the FSR results for mMDT

7It is of course possible to use mMDT with a zcut constraint defined as for pruning instead of ycut, as was

studied in Ref. [31]. This choice would further enhance the similarity we observe for signal jets and is the

default in the current public implementation of mMDT in FastJet [50].
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Figure 5.27: The signal e�ciency for pruning (left) and softdrop (right) as a function of jet pT when
adding FSR, ISR, hadronization and UE. THe UE has a severe impact on the softdrop e�ciency for
signal jets [47].

terms of jet observables for large radius jets, and therefore seemed like the obvious choice
to address both issues listed above: The sensitivity of softdrop regarding UE contamination
and the strong pileup dependence of ⌧21. The focus of Search II would therefore be on the
commissioning of a novel W-tagger. There are interesting changes and inclusions in the
analysis strategy as well: The inclusion of a Z0 ! WW signal hypothesis and the addition of
a completely new analysis, the single V-tag analysis.

5.2.2 Analysis strategy

The analysis strategy for this search is conceptually the same as for Search I. In addition,
we’ll take advantage of the n-subjettiness categorization and do an additional analysis in
parallel: A search for excited quark resonances q⇤ [48, 49] decaying to qW or qZ. We call
this the single V-tag analysis, and the analysis selection only di↵ers in that one jet is not
required to pass the V-tag selection (groomed mass and n-subjettiness). The VV analysis is
hereby referred to as the double V-tag analysis. The di↵erence between the two analyses is
illustrated in Figure 5.28. In addition, limits are set on a Z0 ! WW signal hypothesis in the
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Figure 5.28: The double (top) and single (bottom) W/Z-tag analysis.



What could we be missing?
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Signals could still be present in our data, but may look different!  

- catching tail of other non-SM boson? 

MJ(GeV)65 105

W/Z 
mass 

window

A? A?

Idea: Lets make a generic framework allowing us to easily scan full jet mass and 
dijet invariant mass spectrum!

- not necessarily 2-, but N-pronged?

https://indico.cern.ch/event/649482/contributions/2993323/
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Thesis work: 
Diboson resonance searches at 13 TeV with CMS 

MVV

MV

MV

• I  :  First search for diboson resonances at 13 TeV 

• II :  A new pileup-resistant, perturbative robust tagger 
• III:  A novel framework for multi-dimensional searches 
• IV: Encoding jet substructure with a deep neural network



3D fit strategy
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Dijet invariant mass (GeV)

MVV = X TeV

1D
Dijet invariant mass (GeV)

MV1

MV2

MVV = X TeV

Jet1 mass (GeV)

Jet2 mass (GeV)

3D

Take advantage of the fact that signal is resonant in 3D: MV, MV and MVV 

- scan MV1-MV2-MVV  hyperplane!

The benefits of this: 

1. Can take jet mass and dijet mass correlations fully into account 
2. Larger signal acceptance without mass cuts 
3. Can scan full jet mass spectrum in one analysis



Building PDFs
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z: mjj

Dijet invariant mass (GeV)

y: mj2

Softdrop jet mass (GeV)

x: mj1

Signal 
QCD 
Z(qq)+jets 
W(qq)+jets

Softdrop jet mass (GeV)

1. Signal 3D PDF   
- Resonant in x, y and z 

2. Non-resonant background 
- QCD, main background  
- Non-resonant in x, y and z 

3. Resonant background 
- W/Z+jets, resonant in x+y 

4. Alternate PDFs  
- 5 additional shape 
uncertainties

Signal 
QCD 
Z(qq)+jets 
W(qq)+jets

Signal 
QCD 
Z(qq)+jets 
W(qq)+jets

4 ingredients to full 3D model, derived from MC



Non-resonant background
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PNR(mjj, mjet1, mjet2)  =  Pjj ( mjj | θ1)   x   Pj ( mjet1 | mjj, θ2 )   x   Pj ( mjet2 | mjj, θ3) 

Conditional PDFs to account  
for mj-mjj correlations!

Final 3D histogram has 250k bins, how to get smooth shape from QCD MC?

1D histogram 2D histogram 2D histogram

Generated mjj-mj datapoint smeared  
and fill histogram as a full Gaussian

z

G(mjj1,mj1)
G(mjj2,mj2)

G(mjj1,mj1)
mjj1,mj1

mjj2,mj2

mjj3,mj3

mjet1/mjet2

mjj

→ Start from generated jet mass/mjj and use “forward smearing kernel” approach
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Is Nature Herwig++, MadGraph or Pythia?  
LO(Pythia) or NLO (Powheg)? 

- predictions disagree, let’s allow it to be all!  
 
 
 
 
 
 
 
 
 
 

Add alternate shapes based on different MC 

- large pre-fit uncertainties, fit can adjust to  
 match data

Dijet invariant mass (GeV)

z: mjj

QCD Pythia8 (nominal) 
QCD Herwig++  
QCD MadGraph+Pythia8 
QCD Powheg
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- improves sensitivity to mX, constrain 
signal systematic uncertainties  
(mass scale, resolution, tag eff. etc.)

First results with 3D fit
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First measurement of boosted  
W/Z(qq)+jets in diboson searches!
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3D fit method yields 20-30% improvement with respect to 1D search! 
Adding 2017 data yields ~40% performance improvement
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Comparison to old method

BETTER!



Up to 35% better than ATLAS equivalent search!

Comparison to ATLAS
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BETTER!



Next steps
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X → VV
X → VH
X → HH

q qMX
q̅ q̅

AK8 AK8

For full 13 TeV dataset of 150 fb-1:  
 
VV, VH(bb) + HH in one single analysis!
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W-jet

Going further, important to improve analysis 
sensitivity as no more C-O-M energy 
increase (after 14 TeV) 

- need better taggers 

 
 
 
 
 
So far, assume 2-prong signals and 
discriminate from background using 𝜏21 

- how to stay model-independent to look for 
any signal? 

- need tagger that “knows” what 
substructure looks like

Future plans
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vs.

quark/gluon jet

12/12/17 Anti-QCD Tagger
9

Cascade Decay Example

25% 25% 25% 25%

100%

Jet Mass

Shape variables

Displaced vertices (e.g. b/c)

Embedded leptons

12/12/17 Anti-QCD Tagger
9

Cascade Decay Example

25% 25% 25% 25%

100%

Jet Mass

Shape variables

Displaced vertices (e.g. b/c)

Embedded leptons
12/12/17 Anti-QCD Tagger

9

Cascade Decay Example

25% 25% 25% 25%

100%

Jet Mass

Shape variables

Displaced vertices (e.g. b/c)

Embedded leptons

12/12/17 Anti-QCD Tagger
9

Cascade Decay Example

25% 25% 25% 25%

100%

Jet Mass

Shape variables

Displaced vertices (e.g. b/c)

Embedded leptons

any of these?

Deep Neural Networks!

Deep Neural Networks!
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• I  :  First search for diboson resonances at 13 TeV 

• II :  A new pileup-resistant, perturbative robust tagger 
• III:  A novel framework for multi-dimensional searches 
• IV: Encoding jet substructure with a deep neural network

Thesis work: 
Diboson resonance searches at 13 TeV with CMS 



Physics-based deep neural network to discriminate q/g from W jets 
 (introduced for top tagging by G. Kasieczka et. Al)

- only inputs are jet constituent 4-vectors!

LoLa: DNN for W-tagging
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W� W+

q̄0

q

q̄0

qW
�

W+q̄ 0

q

q̄ 0

qW� W+

q̄0

q

q̄0

q

E, px, py, pz

E, px, py, pz

E, px, py, pz

E, px, py, pz
vs.E, px, py, pz

 
Jet clustering layer and 
Minkowski space layer  
ensure network learns 
substructure!

E, px, py, pz

E, px, py, pzE, px, py, pz

https://arxiv.org/abs/1707.08966


Custom layers
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

xC
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The xC
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Combination Layer:

Input:

Jet  
4-vector

Each  
constituent

“Subjet 1” “Subjet 2”

Trainable weights!  
DNN can weigh up/down  
particles and make subjets!

E.g for 2 particles 
(in reality 40)



Custom layers
CoLa output:
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

xC
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The xC
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

10.1 LoLa 257

10.1.4 The Lorentz Layer

The Lorentz Layer (LoLa) is responsible for encoding how particles move in space-time through

a simple set of rules. Each column (four-vector) of xC
µ,i, is used to compute, and afterwards is

replaced by, the following k = 7 features:
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Going through from top to bottom, these are:

• the invariant mass and pT of each four-vector,

• a linear combination of all four-vector energies where each is scaled by a trainable weight,

• two times the sum of distances between the four-vector under consideration and every other

column reweighted with a trainable weight, and

• two times the minimum distance between the four-vector under consideration and every

other column where each distance again is reweighted by a trainable weight.

The Minkowski metric enters explicitly in the first and in the last four calculations, where the

neural network is told to abide by the rules

m2(xC
µ,i) = gµ⌫xC

µ,ix
C
⌫,i (10.5)

and

d2(xC
µ,i, x

C
µ,j) = (xC

µ,i � xC
µ,j)µgµ⌫(xC

µ,i � xC
µ,j)⌫ (10.6)

with gµ,⌫ = [�1, 1, 1, 1], when calculating the invariant mass and distance between all four-vectors

produced by CoLa. This tells the neural network to use a space-time geometry in all its calculations

and to respect Lorentz invariance. The four final rows of LoLa are the most interesting: Here

the network computes quantities similar to n-subjettiness by summing up the distances between

all constituents, the jet axis and the subjets produced by CoLa. If, for instance, the network
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• the invariant mass and pT of each four-vector,

• a linear combination of all four-vector energies where each is scaled by a trainable weight,

• two times the sum of distances between the four-vector under consideration and every other

column reweighted with a trainable weight, and

• two times the minimum distance between the four-vector under consideration and every
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with gµ,⌫ = [�1, 1, 1, 1], when calculating the invariant mass and distance between all four-vectors

produced by CoLa. This tells the neural network to use a space-time geometry in all its calculations

and to respect Lorentz invariance. The four final rows of LoLa are the most interesting: Here

the network computes quantities similar to n-subjettiness by summing up the distances between

all constituents, the jet axis and the subjets produced by CoLa. If, for instance, the network

5 (#CoLa) x 7 (#LoLa) matrix!
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“𝜏1”-like! “𝜏2”-like!

Minkowski metric!



55% signal efficiency per jet 
increase compared to 𝜏21 at 
given mistag rate 

- for analysis requiring 2 
tagged jets  → 2*x signal 
efficiency! 

Could lead to large 
improvement in sensitivity for 
future VV analyses! 

Train and use as “generic” 
anti-q/g tagger in the future?!*

Performance
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BETTER!

*https://arxiv.org/abs/1808.08979

LoLa  
(full mass range)

BETTER

𝝉21

pT > 200 GeV

65 GeV < M < 105 GeV

𝝉21DDT

LoLa 
65 GeV-105 GeV 



Summary & outlook
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• I  :  First search for diboson resonances at 13 TeV 

• I(a)  :  Double Higgs tagging algorithm training/performance 

• I(b)  :  W-tag scalefactors for 2015 data 

• I(c)  :  Study of CHS softdrop 

• II :  A new pileup resistant, perturbative robust tagger 

• II(a)  :  W-tag scalefactors for 2016 data, jet mass corrected 

• II(b)  :  Study of other taggers (dichroic, 𝜏21 with grooming)  

• III:  A novel framework for multi-dimensional searches 

• III(a)  :  W-tag scalefactors for 2017 data (two taggers) 

• III(b)  :  Measurement of W-tag pT-dependence 

• III(b)  :  Barrel pixel gain calibrations for 2018 data taking 

• IV: Encoding jet substructure with a deep neural network

42 Diboson resonance searches in CMS

5.1 Search I: First search for diboson resonances at 13 TeV

When the LHC started its Run II data taking period in summer 2015, it would be the first
time ever for a particle collider to produce collisions with center-of-mass energies of 13 TeV.
The Higgs boson for which the LHC was designed to find had been discovered at the end of
the previous data taking era, leaving us with a Standard Model that we know is, in the best
case, in need of extensions and, in the worst case, an e↵ective theory valid only in a certain
energy domain. The Run II search program would therefore be oriented around two main
e↵orts: Precision measurements of the newly discovered Higgs boson and searches for Beyond
Standard Model physics.

I started my PhD four months before the first 13 TeV collisions took place and had to
consider the following: What was the most interesting search that could be done on a short
time scale (to be presented 6 months after first collisions, at the CERN end-of-year ‘Jam-
boree’), would be manageable for a student with no previous analysis experience and would
be robust enough incase there were issues with the never-before-validated 13 TeV Monte Carlo?

The attention of the high-energy physics community has in the past years been focused on
certain ‘hot topics’: In 2018, this was most certainly leptoquarks (driven by a dimuon excess
around 30 GeV), in 2016 and 2017 is was diphoton resonances (with > 3� excesses observed
both in ATLAS and in CMS). And in 2015 during the 13 TeV LHC start-up, attention was
centered on diboson resonances in the all-hadronic final state. The choice was therefore clear:
My first analysis would be a search for diboson resonances in the boosted dijet final state. With
a background model based on a smooth fit to data in the signal region, eliminating the need
for accurate QCD MC predictions, this was a simple one-background only (QCD) analysis,
feasible for a first-year PhD student to finalize within a year. Despite its straightforwardness,
due to observed 8 TeV excesses, it was in addition considered a high-profile analysis.

This search became one of the first ‘boosted’ searches published with 13 TeV data as well as
the first search to take advantage of dedicated ‘grooming’ (see Section 4.5.1) triggers.

Published in Journal of High Energy Physics (2017), DOI: 10.1007/JHEP03(2017)162
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5.2 Search II: A new pileup resistant and perturbative safe
tagger

With the first 13 TeV diboson resonance search published, we could conclude that more
data would be needed in order to fully exclude the observed Run 1 excess. Luckily, 2016 was
right around the corner and, with the LHC planning to reduce �⇤ from 80 cm to 40, the
machine was expected to deliver an instantaneous luminosity three times that of the 2015 peak
luminosity. Higher instantaneous luminosity, however, meant double the pileup.

We knew that a novel pileup subtraction algorithm had been developed, which provided far
better pileup and underlying event rejection than the current default (CHS). We also knew
that there had been made progress on the theory side in the development of a groomer which
was insensitive to the soft divergences of QCD and allowed to accomplish jet grooming in
a theoretically calculable way, SoftDrop (mMDT). With more time at hand than in 2015,
I therefore decided to pursue a novel W-tagger for this second search. This included work
like optimization, development of dedicated jet mass corrections (in use today and recom-
mended by the jet physics object group) as well as validation of the new tagger. The tagger,
together with the mass corrections, afterwards became the default W-tagging algorithm in CMS.

Search II became the first published analysis to use the novel PUPPI+softdrop algorithm, now
default for W-tagging in CMS. Through this search, the tagger was optimized, commissioned
and validated, making it available for several analysis to come. In addition, the search was
extended to setting limits on three additional signal hypothesis. Two of these were in a final
state never before explored at 13 TeV, the q⇤ ! qV single V-tag analyses.

Number of PVs
0 10 20 30 40

Ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4
13 TeVCMS Simulation Preliminary

 < 105 GeVCHS
Pruned65 GeV < M

 < 105 GeVPUPPI
Softdrop65 GeV < M

 0.45≤ 21τ < 105 GeV + CHS
Pruned65 GeV < M

 0.4≤ 21τ < 105 GeV + PUPPI
Softdrop65 GeV < M

 0.52≤ DDT
21τ < 105 GeV + PUPPI

Softdrop65 GeV < M

W-jet, AK R = 0.8
 > 200 GeV

T
p

 2.4 GeV≤| η|

Published in PRD, DOI: 10.1103/PhysRevD.97.072006; CMS-PAS-B2G-16-021; CMS-PAS-JME-16-003
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5.4 Search III: A novel framework for multi-dimensional searches

After two successful analyses of 13 TeV data, no excess had been observed in the all-hadronic
VV channels. The available phase space for New Physics to hide out was shrinking and we
saw two ways forward: Either look for deviations from the Standard Model through precision
measurements that would allow searching for resonances currently out of LHC reach, or
deplete the number of places New Physics could be hiding as e�ciently and completely as
possible. With a solid background in searches with boosted final states, we decided for the
latter. Our idea was the following: What if the small excesses observed in VV final states
were due to us catching the tail of another type of boson with a mass slightly di↵erent from
that of a W or a Z boson? And what if we were seeing cascade decays, where the jets in
questions were actually four-prong like rather than two?........TODO

Completing the Run 2 VV search program is Search III: A novel framework for multi-
dimensional searches.
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Infusing deep neural networks with physics

The previous chapter ended by mentioning two ingredients that will become important for future

searches with the multi-dimensional fit: a better vector-boson tagger, and a generic anti-QCD

tagger for signal-independent searches. As a side project during my final PhD semester, I worked

on a solution for the first, which has the added benefit of being a stepping stone towards the latter.

This is what I will cover in the final chapter of this thesis.

When applying machine learning to particle physics problems, the input has historically con-

sisted of pre-computed high-level features (quantities based on lower-level variables and certain

theoretical assumptions). With the rise of deep learning however, computational graphs have

achieved an increased capability to find even the smallest correlations in datasets, allowing them

to construct complex features on their own. The deep neural network (DNN) I will present in

the following is based on the assumption that, given su�cient instructions about the laws of

Nature, a neural network should be capable of reconstructing its own high-level features based on

lower-level quantities only. In addition, if smartly designed, the network should be capable of

finding novel correlations and physical features, a-priori unknown, by allocating a physical meaning

to the training weights deep within the network. The deep neural network I will present here is

trained to discriminate quark and gluon jets from W-jets. However, as I will discuss in the final

section of this chapter, it is also the perfect starting point for developing a generic anti-QCD tagger.

The work presented in the following has not been published and still qualifies as work in progress.

However, I believe developing taggers such as these is of great importance for future versions of

the searches presented here, and it is something I hope to continue working on in the future.

“What can we teach the machine?” !“What can we learn from the machine?”.
Work in progress.
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• I  :  First search for diboson resonances at 13 TeV 

• Double Higgs tagging algorithm training/performance 

• W-tag scale factor method improvement for 2015 data 

• Study of CHS softdrop, optimization of W-tagging algorithm 

• II :  A new pileup resistant, perturbative robust tagger 

• W-tag scalefactors for 2016 data, jet mass corrected+pruning 

• Study of other taggers (dichroic, 𝜏21 with grooming) 

• CMS tracker offline quality monitoring 

• III:  A novel framework for multi-dimensional searches 

• W-tag scalefactors for 2017 data (two taggers) 

• Measurement of W-tag pT-dependence, jet mass scale and resolution 

• Barrel pixel gain calibrations for 2018 data taking 

• IV: Encoding jet substructure with a deep neural network
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5.1 Search I: First search for diboson resonances at 13 TeV

When the LHC started its Run II data taking period in summer 2015, it would be the first
time ever for a particle collider to produce collisions with center-of-mass energies of 13 TeV.
The Higgs boson for which the LHC was designed to find had been discovered at the end of
the previous data taking era, leaving us with a Standard Model that we know is, in the best
case, in need of extensions and, in the worst case, an e↵ective theory valid only in a certain
energy domain. The Run II search program would therefore be oriented around two main
e↵orts: Precision measurements of the newly discovered Higgs boson and searches for Beyond
Standard Model physics.

I started my PhD four months before the first 13 TeV collisions took place and had to
consider the following: What was the most interesting search that could be done on a short
time scale (to be presented 6 months after first collisions, at the CERN end-of-year ‘Jam-
boree’), would be manageable for a student with no previous analysis experience and would
be robust enough incase there were issues with the never-before-validated 13 TeV Monte Carlo?

The attention of the high-energy physics community has in the past years been focused on
certain ‘hot topics’: In 2018, this was most certainly leptoquarks (driven by a dimuon excess
around 30 GeV), in 2016 and 2017 is was diphoton resonances (with > 3� excesses observed
both in ATLAS and in CMS). And in 2015 during the 13 TeV LHC start-up, attention was
centered on diboson resonances in the all-hadronic final state. The choice was therefore clear:
My first analysis would be a search for diboson resonances in the boosted dijet final state. With
a background model based on a smooth fit to data in the signal region, eliminating the need
for accurate QCD MC predictions, this was a simple one-background only (QCD) analysis,
feasible for a first-year PhD student to finalize within a year. Despite its straightforwardness,
due to observed 8 TeV excesses, it was in addition considered a high-profile analysis.

This search became one of the first ‘boosted’ searches published with 13 TeV data as well as
the first search to take advantage of dedicated ‘grooming’ (see Section 4.5.1) triggers.

Published in Journal of High Energy Physics (2017), DOI: 10.1007/JHEP03(2017)162
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5.2 Search II: A new pileup resistant and perturbative safe
tagger

With the first 13 TeV diboson resonance search published, we could conclude that more
data would be needed in order to fully exclude the observed Run 1 excess. Luckily, 2016 was
right around the corner and, with the LHC planning to reduce �⇤ from 80 cm to 40, the
machine was expected to deliver an instantaneous luminosity three times that of the 2015 peak
luminosity. Higher instantaneous luminosity, however, meant double the pileup.

We knew that a novel pileup subtraction algorithm had been developed, which provided far
better pileup and underlying event rejection than the current default (CHS). We also knew
that there had been made progress on the theory side in the development of a groomer which
was insensitive to the soft divergences of QCD and allowed to accomplish jet grooming in
a theoretically calculable way, SoftDrop (mMDT). With more time at hand than in 2015,
I therefore decided to pursue a novel W-tagger for this second search. This included work
like optimization, development of dedicated jet mass corrections (in use today and recom-
mended by the jet physics object group) as well as validation of the new tagger. The tagger,
together with the mass corrections, afterwards became the default W-tagging algorithm in CMS.

Search II became the first published analysis to use the novel PUPPI+softdrop algorithm, now
default for W-tagging in CMS. Through this search, the tagger was optimized, commissioned
and validated, making it available for several analysis to come. In addition, the search was
extended to setting limits on three additional signal hypothesis. Two of these were in a final
state never before explored at 13 TeV, the q⇤ ! qV single V-tag analyses.
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5.4 Search III: A novel framework for multi-dimensional searches

After two successful analyses of 13 TeV data, no excess had been observed in the all-hadronic
VV channels. The available phase space for New Physics to hide out was shrinking and we
saw two ways forward: Either look for deviations from the Standard Model through precision
measurements that would allow searching for resonances currently out of LHC reach, or
deplete the number of places New Physics could be hiding as e�ciently and completely as
possible. With a solid background in searches with boosted final states, we decided for the
latter. Our idea was the following: What if the small excesses observed in VV final states
were due to us catching the tail of another type of boson with a mass slightly di↵erent from
that of a W or a Z boson? And what if we were seeing cascade decays, where the jets in
questions were actually four-prong like rather than two?........TODO

Completing the Run 2 VV search program is Search III: A novel framework for multi-
dimensional searches.
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Infusing deep neural networks with physics

The previous chapter ended by mentioning two ingredients that will become important for future

searches with the multi-dimensional fit: a better vector-boson tagger, and a generic anti-QCD

tagger for signal-independent searches. As a side project during my final PhD semester, I worked

on a solution for the first, which has the added benefit of being a stepping stone towards the latter.

This is what I will cover in the final chapter of this thesis.

When applying machine learning to particle physics problems, the input has historically con-

sisted of pre-computed high-level features (quantities based on lower-level variables and certain

theoretical assumptions). With the rise of deep learning however, computational graphs have

achieved an increased capability to find even the smallest correlations in datasets, allowing them

to construct complex features on their own. The deep neural network (DNN) I will present in

the following is based on the assumption that, given su�cient instructions about the laws of

Nature, a neural network should be capable of reconstructing its own high-level features based on

lower-level quantities only. In addition, if smartly designed, the network should be capable of

finding novel correlations and physical features, a-priori unknown, by allocating a physical meaning

to the training weights deep within the network. The deep neural network I will present here is

trained to discriminate quark and gluon jets from W-jets. However, as I will discuss in the final

section of this chapter, it is also the perfect starting point for developing a generic anti-QCD tagger.

The work presented in the following has not been published and still qualifies as work in progress.

However, I believe developing taggers such as these is of great importance for future versions of

the searches presented here, and it is something I hope to continue working on in the future.

“What can we teach the machine?” !“What can we learn from the machine?”.
Work in progress.

Number of PVs
0 10 20 30 40

M
is

ta
g 

ra
te

0

0.1

0.2

0.3 13 TeVCMS Simulation Preliminary

 < 105 GeVCHS
Pruned65 GeV < M

 < 105 GeVPUPPI
Softdrop65 GeV < M

 0.45≤ 21τ < 105 GeV + CHS
Pruned65 GeV < M

 0.4≤ 21τ < 105 GeV + PUPPI
Softdrop65 GeV < M

 0.52≤ DDT
21τ < 105 GeV + PUPPI

Softdrop65 GeV < M

QCD, Pythia8
 > 200 GeV

T
p

 2.4 GeV≤| η|

 [GeV]
jet1

Softdrop m
60 80 100 120 140 160 180 200

Ev
en

ts
/ 2

 G
eV

200
400
600
800

1000
1200
1400
1600
1800 Data

Signal+background fit
 unc.σ 1±

tW+jets, t
Z+jets

 500)× WW (→ (2 TeV) bulkG

HPLP category

 13 TeV-177.3 fb

CMS
Preliminary

 [GeV]
jet1

Softdrop m
100 150 200

σ
D

at
a-

fit

2−
1−
0
1
2

Not presented today!



Thea K. Aarrestad                                                                                                                 PhD defence 50

Backup
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3D fit
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- 55 GeV < mjet < 215 GeV (limited by PF reco ) 
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later)
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Decorrelating 𝛕21

 54
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4 5 Reconstruction and selection of events

from consideration the other subjet until the soft-drop condition is met. The soft-drop jet mass
mjet used in the analysis is the invariant mass of the sum of the four-momenta of the final
remaining jet constituents, weighted according to the PUPPI algorithm. The mass is corrected
by a factor derived in samples of simulated W bosons to ensure a pT- and h-independent jet
mass distribution centred on the nominal V mass (following the procedure described in [70]).
The n-subjettiness variable t21 quantifies the compatibility of a jet with a two-prong topology as
compared to a one-prong structure, so that t21 assumes low values for hadronic boson decays,
but higher values for background processes. Since this search probes a large range of jet mass
and dijet invariant masses, we decorrelate the variable from the jet soft drop mass and the
jet pT-scale dependence following the “designed decorrelated taggers (DDT)” methodology
presented in Ref. [71]. This ensures a minimal sculpting of the jet mass as a function of the
jet pT for the non-resonant backgrounds. This decorrelation is performed by flattening the
t21 profile dependence on r0 = log(M2

j /pT/µ), where µ = 1 GeV, in QCD Monte Carlo after
applying the full analysis selections. This leads to the following definition of tDDT

21 :

tDDT
21 = t21 � M ⇥ r0, (1)

where M is the extracted slope from a fit to t21 profile versus r0, evaluated to be M = �0.080.130

The t21 (left) and tDDT
21 (right) profile dependence on r0 is shown in Figure 1. We observe a131

small residual difference between pT bins, but this is negligible for our purposes (less than a132

tDDT
21 interval of 0.02) and does not result in a large dependence of tDDT

21 on jet pT. The tDDT
21
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Figure 1: The t21 profile dependence on r0 = log(M2
j /pT/µ) (left). A fit to the linear part of the

spectrum yields the slope M = �0.080, which is used to define the mass- and pT-decorrelated
variable tDDT

21 = t21 � M ⇥ r0. The tDDT
21 profile versus r0 is shown on the right.
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variable has the added benefit of providing additional discriminating power due to the very134

different distributions of r0 for quark or gluon jets and W jets. Fig. 2 shows the performance135

of t21 and tDDT
21 in the background-signal efficiency plane (left) where we observe a significant136

gain in W-jet tagging efficiency at a given guark/gluon jet efficiency (mistag rate) when using137

tDDT
21 . This happens because we are taking advantage of both n-subjettiness and the ratio of jet138

groomed mass and momentum, leading to a larger separation between signal and background,139

as can be seen when comparing the distributions of the different tagging variables in the right140

plot of Fig. 2. The distributions in data and simulation after selecting jets with a soft-drop141
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Controlplots in 16+17 data

 56

6 5 Reconstruction and selection of events
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Figure 3: PUPPI softdrop jet mass distribution (upper left), tDDT
21 (upper right), and dijet in-

variant mass (lower) for events with a soft drop jet mass between 55 and 215 GeV.
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Similar spectra in 2016 vs. 2017,  ~15-20% higher yield in 2017 dataset

2016 versus 2017

 57
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Templates are product of resonance mass and jet mass shapes (mj/mjj uncorrelated) 

 
PSIG(mjj, mjet1, mjet2)  =   

 Pjj ( mjj | θ1(mX) )   x   Pj ( mjet1 | θ2(mX) )   x   Pj ( mjet2 | θ2(mX) ) 

 
 
Fit softdrop jet mass and dijet mass with double CB, parametrise as function of mx
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Signal modelling
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Mean and width stable 
due to decorrelated 𝛕21 

Yield from  integral of mVV 
histogram 

- parametrised as a 
function of mX for 
smooth signal efficiency 
versus pT 

- efficiency lower at edges 
due to bin edge cut off 

- lower signal efficiency in 
HP, but background 
strongly reduced
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Signal 2016 versus 2017
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2017 2017 2017
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To account for correlations mjet/mjj, non-resonant background modelled conditionally 

- Pnon-res(mjj , mjet1, mjet2) =    Pjj ( mjj | θ1 )    x    Pj (mjet1 | mjj , θ2 )    x  Pj (mjet2 | mjj , θ2 ) 

With 250k bins, need to ensure smooth and full shape → kernel approach 

- rather than filling 1D/2D histogram with mjet, mjet/mjj (sparse), let each event 
contribute 1D/2D gaussian kernel defined through jet mass scale and resolution 

Finally, interpolate histogram such that no bins are empty → full, smooth shape

Non-resonant background

 61
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k(Mj ,MV V ) =
wip

2⇡rMV V ,i · rMJ ,i

exp

 
�1

2

✓
MV V � sMV V ,i

rMV V ,i

◆2

� 1

2

✓
MJ � sMJ ,i

rMJ ,i

◆2
!

All pT-bins Mjreco/Mjgen All pT-bins Mjjreco/Mjjgen

In bins of gen jet pT, derive jet mass scale and 
resolution from Gaussian fit to Mj(reco)/Mj(gen) 

Each event smeared with 1D(MJJ)/2D(MJ) 
Gaussian kernel

Defining Gaussian kernel
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16 7 Statistical interpretation

ity density functions in the fit, with pre-fit values chosen such that to cover any differences353

between data and simulation observed in control regions. The alternative shapes described354

above are shown in Figure 9.355
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Figure 9: The nominal MC data (markers) and derived kernel using a forward-folding ker-
nel approach (black solid line), shown together with the five alternate shapes added to the fit
as shape nuisance parameters. The shapes for the high purity category (left) and low purity
category (right) obtained with the 2017 simulation is shown.
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Uncertainties

 65

15

Source Relevant quantity HPHP unc. (%) HPLP unc. (%)
PDFs Signal yield 3
W-tagging efficiency Signal+ V+jets yield 25 (21) 13 (11)
W-tagging pT-dependence Signal+ V+jets yield 8-23 9-25
Integrated luminosity Signal+ V+jets yield 2.3 (2.6)
QCD normalisation Background yield 50
V+jets normalisation Background yield 10
V+jets ratio Migration 10
PDFs Signal MVV/Mj mean and width < 1
Jet energy scale Signal MVV mean 2
Jet energy resolution Signal MVV width 5
Jet mass scale Signal + V+jets Mj mean 1
Jet mass resolution Signal + V+jets Mj width 8
QCD HERWIG++ QCD shape –
QCD MADGRAPH+PYTHIA8 QCD shape –
pT-variations QCD shape –
Scale-variations QCD shape –
High-Mj turn-on QCD shape –
pT-variations V+jets MVV shape –

Table 2: Summary of the systematic uncertainties and the quantities they affect. Numbers in
parenthesis correspond to uncertainties for the 2016 analysis when these differ from those in
2017. Dashes indicate shape variations that cannot be explicitly quantified here as described in
the text.

efficiency scale factors, which are measured in tt events where the jet has a pT around 200 GeV,325

towards higher transverse momenta. This uncertainty is estimated in signal MC and is based326

on the difference in tagging efficiency between PYTHIA and HERWIG++ as a function of pT rela-327

tive to the difference at 200 GeV. This is considered as correlated between the tDDT
21 categories328

and is given as 6(7)% ⇥ ln(pT/300 (GeV) for the high-purity and low-purity categories, re-329

spectively. The shape uncertainties on Mj are considered fully correlated between signal and330

V+Jets, allowing for the data to constrain these parameters. These affect the mean and the331

width of the signal and V+jets probability density functions.332

Uncertainties on the background shape are added as alternative probability density functions333

to the fit through vertical template morphing. We define five shape nuisance parameters in334

total, each of them corresponding to two mirrored alternative shapes that simultaneously af-335

fect all three dimensions. The first effect accounts for a variation of the underlying transverse336

momentum spectrum and the two corresponding mirrored templates are obtained by apply-337

ing up and down variations of each bin along the two jet masses and MVV by a quantity338

proportional to MVV and Mj. The second effect is a variation of the scale and is taken into339

account through two mirrored alternative shapes obtained by applying up and down vari-340

ations of each bin along the two jet masses and MVV by a quantity proportional to 1/MVV341

and 1/Mj. Three additional alternative shapes that simultaneously affect resonance mass and342

jet groomed mass are also added in order to take into account differences in MC generation343

and modelling of parton shower. Since the choice of QCD MC used to generate the nomi-344

nal template is random, we insert additional templates derived using all available QCD MC:345

HERWIG++, MADGRAPH+PYTHIA8 and POWHEG. This allows us to include all background346

knowledge we have available into the fit. Finally, in order to account for an expected MVV347

turn-on in the extreme large-Mj (> 175 GeV) and low-MVV (< 1200 GeV) region, an additional348

shape uncertainty parametrising any discrepancy between the three-dimensional template and349

QCD MC is added to the fit. Note that the latter shape uncertainty only affects the region above350

Mj > 175 GeV and below MVV < 1200 GeV, far from where signal is expected. The nuisance351

parameters associated to these alternative shapes are constrained through Gaussian probabil-352
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W-tagging scalefactors

 66

5.4 Substructure variable corrections and validation 9

systematic uncertainties in the final fit.
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Figure 5: PUPPI softdrop jet mass distribution for events that pass (left) and fail (right) the
tDDT

21 < 0.43 selection in the tt control sample. The result of the fit to data and simulation is
shown by the solid blue and solid red line, respectively. The background components of the fit
are shown as dashed-dotted lines. The fit to 2016 data is shown in the upper panels and the fit
to 2017 data in the lower panels.

219

10 5 Reconstruction and selection of events

2016
m [GeV] s [GeV] W-tag efficiency

tDDT
21 < 0.43

Data 82.0± 0.5 (stat.) 7.1 ± 0.5 (stat.) 0.080 ± 0.008 (stat.)
Simulation 80.9± 0.2 (stat.) 6.6 ± 0.2 (stat.) 0.085 ± 0.003 (stat.)
Data/simulation 1.014± 0.007 (stat.+sys.) 1.09 ± 0.09 (stat.+sys.) 0.94 ± 0.10 (stat.+sys.)
0.43 < tDDT

21 < 0.79
Data 0.920 ± 0.008 (stat.)
Simulation 0.915 ± 0.003 (stat.)
Data/simulation 1.006 ± 0.009 (stat.+sys.)

2017
tDDT

21 < 0.43
Data 80.8± 0.4 (stat.) 7.7 ± 0.4 (stat.) 0.060 ± 0.006 (stat.)
Simulation 82.2± 0.3 (stat.) 7.1 ± 0.3 (stat.) 0.070 ± 0.005 (stat.)
Data/simulation 0.983± 0.007 (stat.+sys.) 1.08 ± 0.08 (stat.+sys.) 0.96 ± 0.12 (stat.+sys.)
0.43 < tDDT

21 < 0.79
Data 0.935 ± 0.006 (stat.)
Simulation 0.932 ± 0.005 (stat.)
Data/simulation 1.003 ± 0.008 (stat.+sys.)

Table 1: W-tagging efficiency, and jet-mass scale and resolution scale factors as evaluated in the
2016 and 2017 data sets.
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Impacts

 67
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GOF
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Limits

 69

Paper Paper

Paper
Paper

Limits set on 4 
different signal 
hypothesis  

Expect to exclude 

- W’ →WZ: 
up to 3.8 TeV 

- Z’ → WW:  
up to 3.6 TeV 

- Approaching  
GBulk (k=̃0.5)

9→5·10-4 pb
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Limits

HPHP versus HPLP 

- HPHP dominate at low 
masses, while HPLP 
dominate at high

HPLP → high masseslow masses ← HPHP

 70
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Loose DDT postfit

 71

6.4 Modelling of the resonant background 33

Figure 31: Comparison between QCD MC simulation (markers) and kernels derived from gen-
erator level quantities (lines) for the nominal 2016 (top) and 2017 (bottom) PYTHIA8 samples for
the low-purity category. The kernels are shown for Mjet1 (left), Mjet2 (middle) and MVV (right).

Figure 32: Comparison between QCD MC simulation (markers) and kernels derived from gen-
erator level quantities (lines) for the nominal 2016 (top) and 2017 (bottom) PYTHIA8 samples for
the high-purity category. The kernels are shown for Mjet1 (left), Mjet2 (middle) and MVV (right).

Figure 33: Comparison between QCD MC simulation (markers) and kernels derived from gen-
erator level quantities (lines) in the HPHP category, using a looser cut on tDDT

21 .

To validate kernel transfer method, we check that we can fit a higher-statistics 387 

 HPHP region by loosening the τDDT cut to 0.49. Results in 12 times more background  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MadGraph, HPHP MadGraph, HPHP MadGraph, HPHPHerwig, HPHP Herwig, HPHP Herwig, HPHPPowheg, HPHP Powheg, HPHP Powheg, HPHP

Several MC checks performed to validate kernels. Use kernel produced with nominal 
Pythia8 MC as starting point and fit pseudo data generated under  

- Herwig - check kernels can account for variations in showering 

- MadGraph - check kernels can account for variations in matrix elemenent 

- Powheg NLO - check kernels can account for variations in perturbative predictions

Kernels: validation in MC

 72
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Detector resolution

 73

gen-pT bins = [200,250,300,350,400,450,500,600,700,800,900,1000,1500,2000,2700,3500,5000]



Comparisons
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3D limits
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7.1 Limits on narrow-width resonance models 19
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Figure 12: Observed and expected limits obtained with 77.3 fb�1 of 13 TeV data after combining
all purity categories for Gbulk ! WW (upper left), Gbulk ! ZZ (upper right), W0 ! WZ (lower
left) and Z0 ! WW (lower right) signals.

fit method introduced here, can be compared to those obtained in a previous searches using375

the same dataset, Ref. [27], in order to estimate whether there is a sensitivity gain in using376

the new method. Figure 13 shows the expected limits based on analyses of the data collected377

in 2016, either using the fit method presented here, or using previous methods. We obtain a378

20-30% improvement with in sensitivity when using the multi-dimensional fit method, and379

about a 35-40% improvement when combining the two datasets with respect to the individual380

Table 3: Observed and predicted background yields together with post-fit uncertainties in the
two purity categories.

HPHP HPLP
W+jets 93.3 ± 16.5 3646 ± 223
Z+jets 42.4 ± 9.1 1655 ± 198
QCD 661 ± 4 51908 ± 289
Predicted total background 797 ± 19 57209 ± 415
Observed yield 778 ± 28 57227 ± 239



3D: 16 vs 17

 76Thea K. Aarrestad                                                                                                                 PhD defense

 (GeV)jjm
2000 4000

Ar
bi

tra
ry

 s
ca

le

0

0.1

0.2

0.3

0.4

0.5

2017/ JER / PUPPI

2016/ JER / CHS



With/without JER

 77Thea K. Aarrestad                                                                                                                 PhD defense

 (GeV)jjm
2000 4000

Ar
bi

tra
ry

 s
ca

le

0

0.1

0.2

0.3

0.4

0.5 2016/ CHS

2016/ JER / CHS



Thea K. Aarrestad                                                                                                                 PhD defence 78

Search I
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Trigger and dijet mass cut
• Background estimate depends on smoothly falling 

Mjj spectrum 

- Start analysis where trigger efficiency > 99% 

• Combination of HT + substructure based triggers 

- AK8PFJet360_TrimMass30 

- AK8PFHT700_TrimR0p1PT0p03Mass50 

- PFHT650_WideJetMJJ900DEtaJJ1p5 

- PFHT800 

• > 99% efficient for: 

- Single-tag :  Mjj > 986 GeV  → start at 990 GeV 

- Double-tag:  Mjj > 955 GeV → start at 955 GeV 

• For control plots, require Mjj > 1020 GeV  
(no jet mass cut applied, higher turn-on)
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Mass correction for PUPPI softdrop mass
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• Generator level correction 

- pT-dependent shift in softdrop mass introduced at 
generator level 

- Correct for this jet mass shift (JMS) effect by fit to 
MPDG=80.4 GeV / Mgen 

• Reconstruction level correction 

- After applying corrections above, (Mreco-Mgen)/Mreco 
jet mass shift is a 5-15% effect 

- Correct for residual effect by fit to Mgen/Mreco 

• Residual data/MC correction due to detector effects 
estimated in semi-leptonic tt̄ (see slide 11) 

• Potential difference due to simulation of tt topology 
accounted for as systematic uncertainty by 
comparing Pythia8+Powheg(NLO) with 
Pythia8+Madgraph(LO)
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Closure test
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Uncorrected New mass corrections

W Z

• After mass corrections applied, 
mass stable as a function of pT 
around 80 GeV 

• Work for Z and H as well 

• Additionally validated in semi-
leptonic tt̄ 

- jet mass scale and resolution close 
to unity (see next slide) 
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W-tagging scalefactor and jet mass scale
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• Estimated in merged W-jet enriched 
sample in semi-leptonic tt̄ (pT~200 GeV): 

- Simultaneous fit in pass (𝝉21 ≤ 0.4) and fail 
(𝝉21 > 0.4) category for data and MC 

- Extract W-tagging efficiency as integral of 
Gaussian fit component→ data/MC 
efficiency yields SF 

- Jet mass scale/resolution from Gaussian 
mean and width 

• Jet mass resolution used to smear MC and 
additionally inserted as systematic 
uncertainties (scaling up/down within unc.) 

• Scalefactor inserted as scale of signal 
yield and as systematic uncertainty 

• Further documentation here 

3.5 W-tagging scalefactor, jet mass scale and jet resolution 17
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Figure 13: The W/Z-jet corrected PUPPI softdrop mass peak for jets from different signal sam-
ples with masses of 1 and 4 TeV.

less than and larger than 0.4. The extracted means and width of the Gaussian used to de-
scribe the W-jet mass peak is compared in data and in simulation, resulting in a jet mass scale
(JMS) and jet mass resolution (JMR) respectively. Three uncertainties are quoted: a statisti-
cal (fit) uncertainty and two systematic uncertainties. The first systematic uncertainty is esti-
mated comparing the difference in JMS and JMR obtained using two different tt MC samples
(Powheg+Pythia8 versus Madgraph+Pythia8). The second is estimated comparing the differ-
ence in JMS and JMR central values when using two different fit methods (with and without
”tails”, as described in Section 6 of Ref. [20]). The jet mass scale is found to be close to unity
and the jet mass resolution is of around 8% with the following estimated values:

Table 5: W jet mass peak position and resolution, as extracted from a top enriched data sample
and from simulation. These are used to derive corrections of the softdrop jet mass.

t21 < 0.4 m [ GeV ] s [ GeV ]
Data 81.9 ± 0.3 GeV 8.9 ± 0.4 GeV
Simulation 82.0 ± 0.2 GeV 8.3 ± 0.3 GeV
Data/simulation 0.999 ± 0.004 (stat)± 0.0006 (sys) 1.08 ± 0.07 (stat)± 0.08 (sys)

The jet mass scale and resolution are used to scale (smear) the softdrop jet mass in Monte Carlo.
The W-tagging efficiencies and corresponding scalefactor extracted from the simultaneous fit
are listed in Table 6.

Table 6: Data-to-simulation scale factors for the efficiency of the t21 selection, as extracted from
a top-quark enriched data sample and from simulation, for both categories (high purity and
low purity) for the all-hadronic and the semileptonic analyses.

t21 selection Efficiency scale factor
t21 < 0.4 1.03 ± 0.03 (stat)± 0.04 (sys)± 0.06 (sys)
0.4 < t21 < 0.75 0.88 ± 0.12 (stat)± 0.17 (sys)± 0.12 (sys)

The corresponding distributions where the fit values are extracted is shown in Figure 14.

The uncertainty on the whole correction procedure is estimated as the statistical and systematic
uncertainties evaluated for the W-jet mass calibration in semi-leptonic tt as listed in Table 5.
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• N-subjettiness categories: 

• Two categories: 

- High-purity: PUPPI 𝝉21 ≤ 0.4  (best S/B) 

- Low-purity: 0.4 < PUPPI 𝝉21 ≤ 0.75 
(enhance sensitivity at high MX) 

• All categories combined for final limits

• Mass categories: 

- To enhance sensitivity, split mass window 
 
 
 
 
 
 
  
 
 
 
 

• 5 mass categories: WW/ZZ/WZ and qW/qZ: 

- Combined into one VV/qV limit ~ slight gain in 
sensitivity  

- Expect more events in WZ channel for 
W’(→WZ) than GBulk(→WW/ZZ)
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Mass and purity categorisation
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Double-tag: WW
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6.3 F-test in signal region

The final F-test performed in order to define the number of fit parameters to be used to fit the
background in each analysis category, is performed in the signal region. The resulting fits and
F-test values for the double tag categories are shown in Figure 29 and Tables 14 to 19. A two
or three parameter fit is sufficient to describe the background for all the double tag categories:
a two parameter fit is sufficient for the ”high-purity” WZ and ZZ categories. as well as the
”low-purity” WW category, while the remaining analysis categories require a three parameter
background fit. The fits for the single tag category is shown in Figure 30 with the corresponding
F-test parameters in Tables 20 to 23. Here, a three parameter fit is sufficient for all categories
except the ”high-purity” qW category. In this category the improvement in fit quality when
increasing the number of parameters is so large adding an additional fit parameter is justified
and we continue by using a 5 parameter fit for this category. A summary on what fit functions
are used for which category is listen in Table 24.

WW category, HP
Function Residuals c2 ndof
2 par 0.251 17.673 16
3 par 0.187 14.863 15
4 par 0.183 14.618 14
Fishers23 5.454 CL 0.033
Fishers34 0.391 CL 0.541

Table 14: Residuals, c2, and degrees of freedom for the WW category, HP category. A 3 param-
eter fit is needed to describe these data.

WW category, LP
Function Residuals c2 ndof
2 par 2.974 13.997 23
3 par 3.082 14.775 22
4 par 3.080 14.768 21
Fishers23 -0.805 CL 1.000
Fishers34 0.015 CL 0.905

Table 15: Residuals, c2, and degrees of freedom for the WW category, LP category. A 2 param-
eter fit is needed to describe these data.

WZ category, HP
Function Residuals c2 ndof
2 par 2.333 17.562 17
3 par 2.158 16.952 16
4 par 2.114 16.842 15
Fishers23 1.372 CL 0.258
Fishers34 0.338 CL 0.569

Table 16: Residuals, c2, and degrees of freedom for the WZ category, HP category. A 2 param-
eter fit is needed to describe these data.
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WZ category, HP
Function Residuals c2 ndof
2 par 2.333 17.562 17
3 par 2.158 16.952 16
4 par 2.114 16.842 15
Fishers23 1.372 CL 0.258
Fishers34 0.338 CL 0.569

Table 16: Residuals, c2, and degrees of freedom for the WZ category, HP category. A 2 param-
eter fit is needed to describe these data.

• Tested fit functions: 

- 2 par: 

- 3 par: 

- 4 par: 

- Alt.:
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6 Background fit checks

The background from QCD multijet events is modelled by a smoothly falling distribution in
each analysis category. The method consists of a smoothness test of the observed data where the
background is assumed to be described by the following empirical probability density function:
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where m is the dijet invariant mass,
p

s the centre of mass energy, P0 is a normalisation pa-
rameter for the probability density function and P1 and P2 describe the shape. To ensure that
this function is sufficient to describe the data in all the different analysis categories, we first
perform a test to check that no additional parameters are needed and to check the systematics
due to choice of fit function. For these studies we use a data sideband, where one of the two
jets is required to have a mass between 20 GeV < MSoftdrop < 65 GeV. In order to quantify how
many parameters are necessary, a Fishers F-test [23] is performed for the fits to data in the data
sideband. The critical value that the test statistic must exceed is chosen to be a > 10%. If the
returned Confidence Level is larger than a, the simpler fit is preferred. The three parameter fit
is compared with the following 2, 4 and 5 parameter functions:
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Additionally, fits with an alternative fit function has also been performed (for the single-tag
categories we try both 4 and 5 parameter versions):
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6.1 Background fit checks in data sideband

We perform a test in a data sideband to make sure the fit functions work on real data and
to exercise the estimation of number of necessary fit parameters via an F-test. The sideband
is constructed by requiring one of the two jets two have a mass in the low softdrop jet mass
sideband, between 20 GeV < MSoftdrop < 65 GeV, while the full W/Z-tag selections are applied
to the other jet. The low-mass jet is also required to pass the t21 cut corresponding to the given
category. For the single-tag category, the sideband is constructed by requiring one of the two
jets to have a mass in the low softdrop jet mass sideband, between 20 GeV < MSoftdrop < 65 GeV
and the other in a high-mass sideband, between 105 GeV < MSoftdrop < 200 GeV. One of the
jets is also required to pass the t21 cut corresponding to the given category. We first check
whether the sideband can be used to exercise the F test by checking whether or not there are
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38 6 Background fit checks

qZ category, HP
Function Residuals c2 ndof
3 par 12.963 21.252 30
4 par 12.961 21.252 29
5 par 9.256 19.644 28
Alt. 4 par 13.931 20.977 29
Alt. 5 par 9.739 20.344 28
Fishers34 0.004 CL 0.948
Fishers45 11.609 CL 0.002
FishersAlt4Alt5 12.484 CL 0.001

Table 22: Residuals, c2, and degrees of freedom for the qZ category, HP category. A 3 parameter
fit is needed to describe these data.

qZ category, LP
Function Residuals c2 ndof
3 par 369.554 47.426 36
4 par 369.554 47.426 35
5 par 298.358 46.525 34
Alt. 4 par 379.111 47.531 35
Alt. 5 par 379.120 47.531 34
Fishers34 0.000 CL 0.994
Fishers45 8.352 CL 0.007
FishersAlt4Alt5 -0.001 CL 0.000

Table 23: Residuals, c2, and degrees of freedom for the qZ category, LP category. A 3 parameter
fit is needed to describe these data.

Mass category Number of parameters
HP LP

WW 3 2
WZ 2 3
ZZ 2 3
qW 5 3
qZ 3 3

Table 24: Fit paramters used in each analysis category
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6 Background fit checks

The background from QCD multijet events is modelled by a smoothly falling distribution in
each analysis category. The method consists of a smoothness test of the observed data where the
background is assumed to be described by the following empirical probability density function:
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where m is the dijet invariant mass,
p

s the centre of mass energy, P0 is a normalisation pa-
rameter for the probability density function and P1 and P2 describe the shape. To ensure that
this function is sufficient to describe the data in all the different analysis categories, we first
perform a test to check that no additional parameters are needed and to check the systematics
due to choice of fit function. For these studies we use a data sideband, where one of the two
jets is required to have a mass between 20 GeV < MSoftdrop < 65 GeV. In order to quantify how
many parameters are necessary, a Fishers F-test [23] is performed for the fits to data in the data
sideband. The critical value that the test statistic must exceed is chosen to be a > 10%. If the
returned Confidence Level is larger than a, the simpler fit is preferred. The three parameter fit
is compared with the following 2, 4 and 5 parameter functions:
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Additionally, fits with an alternative fit function has also been performed (for the single-tag
categories we try both 4 and 5 parameter versions):
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6.1 Background fit checks in data sideband

We perform a test in a data sideband to make sure the fit functions work on real data and
to exercise the estimation of number of necessary fit parameters via an F-test. The sideband
is constructed by requiring one of the two jets two have a mass in the low softdrop jet mass
sideband, between 20 GeV < MSoftdrop < 65 GeV, while the full W/Z-tag selections are applied
to the other jet. The low-mass jet is also required to pass the t21 cut corresponding to the given
category. For the single-tag category, the sideband is constructed by requiring one of the two
jets to have a mass in the low softdrop jet mass sideband, between 20 GeV < MSoftdrop < 65 GeV
and the other in a high-mass sideband, between 105 GeV < MSoftdrop < 200 GeV. One of the
jets is also required to pass the t21 cut corresponding to the given category. We first check
whether the sideband can be used to exercise the F test by checking whether or not there are
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many parameters are necessary, a Fishers F-test [23] is performed for the fits to data in the data
sideband. The critical value that the test statistic must exceed is chosen to be a > 10%. If the
returned Confidence Level is larger than a, the simpler fit is preferred. The three parameter fit
is compared with the following 2, 4 and 5 parameter functions:
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6.1 Background fit checks in data sideband

We perform a test in a data sideband to make sure the fit functions work on real data and
to exercise the estimation of number of necessary fit parameters via an F-test. The sideband
is constructed by requiring one of the two jets two have a mass in the low softdrop jet mass
sideband, between 20 GeV < MSoftdrop < 65 GeV, while the full W/Z-tag selections are applied
to the other jet. The low-mass jet is also required to pass the t21 cut corresponding to the given
category. For the single-tag category, the sideband is constructed by requiring one of the two
jets to have a mass in the low softdrop jet mass sideband, between 20 GeV < MSoftdrop < 65 GeV
and the other in a high-mass sideband, between 105 GeV < MSoftdrop < 200 GeV. One of the
jets is also required to pass the t21 cut corresponding to the given category. We first check
whether the sideband can be used to exercise the F test by checking whether or not there are
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qZ LP: 3 parameters



• Main systematic uncertainties related to signal modelling 

- Tagging efficiency of W-tagging scalefactor (include statistical uncertainty, τ21 cut efficiency 
measurement, simulation of the tt topology and extrapolation to high pT) 

- Jet energy/mass scale and resolution (uncertainties due to jet mass scale and resolution are 
evaluated by scaling the PUPPI softdrop jet mass up and down within uncertainties listed on 
slide 12  

• Uncertainties related to jet mass and τ21 are correlated among categories (e.g events 
migrating out of HP move into LP)  
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26 5 Systematic uncertainties

5 Systematic uncertainties

The largest sources of systematic uncertainty for this analysis is related to the signal modelling
and are due to the uncertainty in the tagging efficiency of the W/Z-tagger, the jet energy/mass
scale, the jet energy/mass resolution and integrated luminosity. The W/Z tagging uncertainty
is estimated in tt̄ events as described in Ref. [19] and yield uncertainties on the scale factors
for the HP and LP tagging categories. The W/Z-tagging uncertainty includes sources from
statistics of jet mass scale, resolution and t21 cut efficiency measurement, nearby jets and ex-
trapolation to high pT. As the scale factor is measured in the low-pT regime, where the decay
products of the W boson are well separated, simulation is used to extrapolate to larger pT.
The pT-dependence of the tagging is also described in Ref. [19]. The uncertainties due to jet
mass scale and jet mass resolution are evaluated by scaling the PUPPI softdrop jet mass up
and down within the jet mass scale/resolution uncertainties as mentioned in Section 3.5 and
described in further detail in Ref. [22]. The pT- and h-dependent jet energy scale and resolution
uncertainties on the resonance shape were approximated by a constant 2% and 10% uncertainty
in 2015, consistent with EXO-15-001. These are not expected to change for the 2016 analysis.
The jet energy response and resolution uncertainty are taken into account as shape uncertainty
by shifting and widening the signal resonance model, while all other signal uncertainties only
affect the yield.

The list of most relevant systematic uncertainties are listed in Table 7.

Table 7: Summary of the signal systematic uncertainties for the analysis and their impact on the
event yield in the signal region and on the reconstructed mVV shape (mean and width). The last
three uncertainties result in migrations between event categories, but do not affect the overall
signal efficiency.

Source Relevant quantity HP+HP unc. (%) HP+LP unc. (%)
Jet energy scale Resonance shape 2 2
Jet energy resolution Resonance shape 10 10
Jet energy scale Signal yield <0.1–4.4
Jet energy resolution Signal yield <0.1–1.1
Jet mass scale Signal yield 0.02–1.5
Jet mass resolution Signal yield 1.3–6.8
Pileup Signal yield 2
Integrated luminosity Signal yield 6.2
PDF and scales (W0 and Z0) Signal yield 2–18
PDF and scales (Gbulk) Signal yield 8–78
Jet mass scale Migration <0.1–16.8
Jet mass resolution Migration <0.1–17.8
W-tagging t21 Migration 15.6 21.9
W-tagging pT-dependence Migration 7–14 5–11
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• Signal shape extracted from MC 

- P.D.F models constructed as 
composite models with Gaussian 
core and an exponential tail.  

• Interpolated in steps of 100 GeV 

• Hypothesis test by comparing fits of  
observed data with “background-
only”function and “background + 
signal" function. 

• To ensure full containment of signal 
peak, setting limits for 

- Single-tag:   1.2 - 6.2 TeV 

- Double-tag: 1.1 - 4.2 TeV 
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Double-tag: HVT final limits
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Single-tag: q* final limits
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• Use binned maximum likelihood fit 


                                        with 


• Background Ni(B) is described by smooth distribution


 

• Is function sufficient to describe background? 
F-test: Increase number of parameters until fit shows no 
significant improvement


- Only estimates how many parameters are needed,  
NO parameters fixed 

• In limit setting, simultaneously fit signal yield and background 
function 


• While maximising likelihood as a function of resonance mass, 
μ and parameters of background function left floating


• Observed data compared with “background-only” function and 
“background + signal" function

1D fitting procedure
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34 5 Limit setting

5 Limit setting250

The QCD background is fitted to data as described in Section 4. In order to extract the limits, a251

signal plus background fit is performed leaving all background parameters floating. The signal252

shape is extracted from signal MC with masses in the range from 1 to 4.5 TeV and a linear inter-253

polation provides shapes for the mass points in between. From these shapes P.D.F models are254

constructed as composite models with a Gaussian core due to detector resolution and an expo-255

nential tail to account for parton distribution function effects. Parametric shape uncertainties256

due to jet energy scale and resolution uncertainties are inserted by variations of the Gaussian257

peak position and width. The dijet invariant mass shape for different benchmark model signals258

are shown in Figure 27. The signal and background components are then simultaneously fitted259

to the data points.
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Figure 27: Dijet invariant mass from signal MC used to extract the signal shape. Here for 1, 2,
3 and 4 TeV resonances.

260

The limits on the cross section of the process X ! qV/VV are then obtained using the asymp-
totic CLS method, where the binned likelihood is defined as

L = ’
i

µni
i e�µi

ni!
(6)

with
µi = s · Ni(S) + Ni(B) (7)

Here s is the signal strength scaling the expected number of signal events in the i-th dijet invari-261

ant mass bin Ni(S), Ni(B) is the expected number of background events in dijet invariant mass262

bin i and ni is the observed number of events in the ith dijet invariant mass bin. The background263

per bin Ni(B) is estimated from the background component of the best signal+background fit264

to the data points.265
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’MDME(328,1)=0 ! Wprime->munu’,558

’MDME(329,1)=0 ! Wprime->taunu’,559

’MDME(331,1)=1 ! Wprime->WZ’,560

’MDME(332,1)=0 ! Wprime->Wgamma’,561

’MDME(333,1)=0 ! Wprime->Wh0’,562

)563

A.2 Alternative background parameterizations564

Fig 37 shows fits with alternative fit functions which are used to crosscheck the systematic
uncertainty on the background shape. The alternative fit functions are:

ds

dm
=

P0(1 � m/
p

s + P3(m/
p

s)2)P1

(m/
p

s)P2
(5)

ds

dm
=

P0(1 � m/
p

s)P1

(m/
p

s)P2
(6)

For the double W/Z-tagged analysis P1 = 0 in Eq. (6).565

A.3 Event displays566

3 parameter fit 
used in Run 1 No signal

Injected 2 TeV W’



• Compute residuals RSS (DATA - fit)  and DOF  (nBins-nPar-1) for bins with bin content > 0 
for each fit function


• If simpler fit function is correct: Relative increase in sum of squares = rel. increase in DOF 
 

• If more complicated model is correct: 
 
 


• To quantify 
 

• Construct F-distribution PDF 
 
 

• CL = 1 - Fdistr.Integral (0. , F) → gives CL under null hypothesis of simpler function being 
sufficient.  If CL > 10%: simpler function is sufficient


F-test
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with  
d1=DOF2-DOF1
d2=N-DOF2F =

RSS1�RSS2
n2�n1
RSS2
N�n2

RSS1�RSS2

RSS2
⇡ n1� n2

n2

RSS1�RSS2

RSS2
>

n1� n2

n2

Only use residuals, 
errors not considered



 

A.  3 parameter default fit function 

B. 2 parameter 

C. 4 parameter 

D. 5 parameter 

Tested functions
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The background from QCD multijet events is modelled by a smoothly falling distribution in
each analysis category. The method consists of a smoothness test of the observed data where the
background is assumed to be described by the following empirical probability density function:

dN
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s)P2
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where m is the dijet invariant mass,
p

s the centre of mass energy, P0 is a normalisation param-180

eter for the probability density function and P1 and P2 describe the shape. To ensure that this181

function is sufficient to describe the data in all the different analysis categories, we first perform182

a test to check that no additional parameters are needed and to check the systematics due to183

choice of fit function. For these studies we use QCD MC and a data sideband, where one of the184

two jets is required to have a mass between 20 GeV < MP < 65 GeV. In order to quantify how185

many parameters are necessary, a Fishers F-test [10] is performed for the fits to data in the data186

sideband. The critical value that the test statistic must exceed is chosen to be a > 10%. If the187

returned Confidence Level is larger than a, the simpler fit is preferred. The three parameter fit188

is compared with the following 2, 4 and 5 parameter functions:189
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In order to crosscheck the systematic uncertainty on the background shape, fits with an alter-
native fit function has also been performed:

dN
dm

=
P0(1 � m/

p
s + P3(m/

p
s)2)P1

(m/
p

s)P2
(5)

We first check whether the signal categorisation creates features in the dijet mass spectrum190

that may be hard to cover with the fit using QCD MC. To do so we look at the dijet invariant191

mass spectrum in each of the ten signal categories divided by the distribution in the untagged192

categories qV and VV. The obtained distributions are shown in Figure 18. The distributions193

are mostly smooth, with the largest feature being in the high-mass tail in the HP double-V tag194

category (top left), most likely due to limited available statistics. From this we expect no large195

difficulties in fitting all categories with a smooth function.196
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Signal 

- 320k fully merged hadronic W-jets (AK8) 
from W’→WZ →4q (MW’ = 0.6-4.5 TeV) 

- why small training set?→ Do not mix 
signal samples until one is understood 
(can change with W polarisation etc.) 

Background 

- QCD Pythia8 non-W jets 

- Danger: Jet substructure strongly 
depends on shower generators (different 
description of gluon radiation). Different 
QCD MC might yield different results 

Disclaimer: The following contains student 
work in progress studies and not CMS 
approved results

The basic setup

 96

Work in progress

Work in progress

Number of jet constituents

Typical W-tag window: 
65-105 GeV
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Four input features 

- 4-vectors of the N=20  
highest-pT jet constituents  
of PUPPI (PileUp Per Particle  
Removal) AK8 jets 

4x20 matrix kμ,i for each jet

Input

 97

E                            px 

py                                         pz

Deep-learned Top Tagging using Lorentz Invariance and Nothing Else

Anja Butter,1 Gregor Kasieczka,2 Tilman Plehn,1 and Michael Russell3

1Institut für Theoretische Physik, Universität Heidelberg, Germany
2Institute for Particle Physics, ETH Zürich, Switzerland

3School of Physics and Astronomy, University of Glasgow, Scotland

We introduce a new and highly e�cient tagger for hadronically decaying top quarks, based on
a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel
machine learning setup and architecture it allows us to identify boosted top quarks not only from
calorimeter towers, but also including tracking information. We show how the performance of our
tagger compares with QCD-inspired and image-recognition approaches and find that it significantly
increases the performance for strongly boosted top quarks.

The classification of hadronic objects has become the
main driving force behind machine learning techniques
in LHC physics. The task is to identify the partonic
nature of large-area jets or fat jets. Such jets occur for
instance in boosted hadronic decays of Higgs bosons [1],
weak gauge bosons [2], or top quarks [3–11].

A widely debated, central question is how we can an-
alyze these jet substructure patterns using a range of
machine learning techniques. An early example were
wavelets, describing patterns of hadronic weak boson de-
cays [12, 13]. The most frequently used approach is
image recognition applied to calorimeter entries in the
azimuthal angle vs rapidity plane, so-called jet images.
They can be used to search for hadronic decays of weak
bosons [14–18] or top quarks [19, 20], or to distinguish
quark-like from gluon-like jets [21]. Another approach
is inspired by natural language recognition, applied to
decays of weak bosons [22].

Top taggers inspired by image recognition rely on con-
volutional networks (CNN) [20, 23], which work well for
numbers of pixels small enough to be analyzed by the net-
work. We have shown that they can outperform multi-
variate QCD-based taggers, but also that the CNN learns
all the appropriate sub-jet patterns [20]. A major prob-
lem arises when we include tracking information with
its much better experimental resolution, leading to too
many, too sparsely distributed pixels [21].

We propose a new approach to jet substructure using
machine learning: rather than relying on analogies to im-
age or natural language recognition we analyze the con-
stituents of the fat jet directly, only using the Lorentz
group and Minkowski space-time. For our DeepTo-
pLoLa tagger we introduce a combination layer (CoLa)
together with a Lorentz layer (LoLa) and two fully con-
nected layers forming a novel deep neural network (DNN)
architecture. In the standard setup the input 4-momenta
correspond to calorimeter towers [24]. However, unlike
other approaches theDeepTopLoLa tagger can trivially
be extended to include tracking information and particle
flow objects with their full experimental resolution.

This flexible setup allows us to study how much per-
formance gain tracking information actually gives. More-

over, it means that DeepTopLoLa can be immediately
included in state-of-the art ATLAS and CMS analyses
and can be combined with b-tagging.

In this letter we first introduce our new machine learn-
ing setup. Using standard fat jets from hadronic top de-
cays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [20]. We then extend the tagger to include particle
flow information and estimate the performance gain com-
pared to calorimeter information for mildly boosted and
strongly boosted top quarks.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors
sorted by p

T

, for example organized as the matrix

(kµ,i) =

0

BB@

k
0,1 k

0,2 · · · k
0,N

k
1,1 k

1,2 · · · k
1,N

k
2,1 k

2,2 · · · k
2,N

k
3,1 k

3,2 · · · k
3,N

1

CCA . (1)

We show a typical jet image for a hadronic top decay in
Fig. 1. Inspired by the usual jet clustering we multiply
these 4-vectors with a matrix Cij , defining a Combina-

Figure 1. Jet image illustrating a signal event, showing 20
4-vectors kµ,i with an energy threshold k0 > 1 GeV on the
calorimeter level.
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Overall performance
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LoLa  
(full mass range)

BETTER

𝝉21

pT > 200 GeV

65 GeV < M < 105 GeV

𝝉21DDT

LoLa 
65 GeV-105 GeV 

Compare performance to most 
commonly used V-taggers  

- Softdrop mass + 𝝉21  

- Softdrop mass + 𝝉21DDT   

(mass/pT decorrelated 𝝉21) 

• LoLa performs significantly better 
than current baseline  

- 20% higher εS at given εB  
compared to best cut-based 

- no need for mass window, 
increased signal acceptance 

For two-W final state, 43% increase in 
signal efficiency for same mistag rate 
as current baseline (B2G-17-001)

Work in progress

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=B2G-17-001
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LoLa is naturally learning that pT and mass 
are discriminating variables 

pT-dependence is a problem because 

- signal efficiency is variable, requires 
working point scaling with pT 

- pT (tagger validation region) !=  
pT (signal region) 

Mass-dependence in itself not a problem, 
but could introduce large background rate 
uncertainties if using mass sidebands 

- ultimately trade-off between efficiency 
and (analysis-dependent) systematics 

- can not decide before checking in analysis

Beyond performance

 99

Output strongly correlated  
with mass/pT

Discriminant vs. pT

Discriminant vs. mass

Work in progress

Work in progress
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Coping with pT
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LoLa uses full jet-pT range (> 200 GeV) in 
training and validation 

- want tagger that offers discrimination 
where there is most background and  
W-boost not extreme (pT < 600 GeV)  

Reweight training set event-by-event to be 
flat in pT-space 

- passed as sample weights to training

nominal

pT-weighted

Work in progress



Thea K. Aarrestad                                                             Lorentz Invariance Based DNN for W-tagging

Coping with pT
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nominal

pT-weighted

nominal pT-weighted

Discriminant vs. pT Discriminant vs. pT

Such strategies yields loss in overall 
performance, but reduced pT-dependence 

- a boost of statistics in extreme bins 
could improve performance for a pT-
weighted training 

No “truth” for which solution is better 
before running full analysis including 
systematics for pT-dependent tagging

Work in progress

Work in progressWork in progress
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Mass sculpting
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Figure 9: Jet mass for jets with pT = 500�600 GeV for the modified mass-drop tagger after

requiring ⌧21 < 0.45 and ⌧ 021 < 0.6, respectively. These two selections have approximately the

same signal e�ciency. The background fraction of the entire sample (for all jet masses) is set

to 80%. The points are the observed MC events, after smearing the jet mass resolution to

⇠ 10%. The purple dotted line corresponds to the smeared W signal jets. The red dashed

line corresponds to the fitted background component, modeled as a Gaussian distribution.

The blue band corresponds to a fit to the signal plus background, where the thickness of the

line corresponds to the uncertainty in the fitted component.
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Figure 10: Jet mass for jets with pT = 1000� 1100 GeV for the modified mass-drop tagger

after requiring ⌧21 < 0.45 and ⌧ 021 < 0.6, respectively. These two selections have approximately

the same signal e�ciency. The background fraction of the entire sample (for all jet masses)

is set to 80%. The points are the observed MC events, after smearing the jet mass resolution

to ⇠ 10%. The purple dotted line corresponds to the smeared W signal jets. The red dashed

line corresponds to the fitted background component, modeled as a Gaussian distribution.

The blue band corresponds to a fit to the signal plus background, where the thickness of the

line corresponds to the uncertainty in the fitted component.

6 Generalized Scale Invariance

Decorrelation schemes can be extended beyond a pair of variables to decorrelate classes of

many variables. Such a procedure can be used to allow for a class of variables to be merged into

– 12 –

QCD, after cut on 𝝉21

Mass shifts 
into W window

arxiv:1603.00027

If you feed a DNN W-jet constituent 4-vectors 
it will inevitably learn W-mass 

- good! Clearly W-mass != q/g-jet mass 

Unfortunately, we often estimate 
background in mass sidebands 

- bad! After cut on tagger, jet mass is 
sculpted making background spectrum 
difficult to constrain 
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Mass sculpting
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At 1% mistag rate, see significant mass 
sculpting with LoLa 

- bulk of remaining QCD jets after cut are in 
signal region 

Hot topic in ML for jets: adversarial DNNs 
that penalise loss if mass is learned (nicely 
shown in C. Shimmin et. Al) 

- loss in efficiency, but overall improvement 
due to reduced uncertainties when relying 
on mass-sidebands 

Adversarial LoLa in progress, but best to 
offer both (for non-sideband based and  
sideband-based analyses) 

- unconstrained, high-efficiency LoLa 

- mass-decorrelated LoLa (adversarial)

LoLa > 0.93

Bulk of remaining 1% 
background jets are in  

W-mass window

Normalised

#MC events

LoLa > 0.93

Work in progress

Work in progress

! LoLa removes low-mass QCD, 
→ increased signal acceptance 

w.o mass window

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.074034
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• Compare nominal training to training after 
removing variables sensitive to mass and pT 

• Remove CoLa column that passes  
sum of all 4-momentum (“jet” 4-vector) 

- not much impact on overall performance 

- not much information taken from LoLa  
“n-subjettiness” 

• Remove Lola mass and pT variables reduce 
performance significantly 

- worst when removing jet 4-vector, mass 
and pT

What does LoLa learn?

 104

Work in progress
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What does LoLa learn?

 105

10.5 What does LoLa learn? 269

on the absolute performance as quantified through the area under the curve (AUC) given in

parenthesis. This indicates that the CoLa layer has little impact on the absolute performance

in terms of tagging e�ciency, though it might become important when attempting to train a

signal-independent tagger. The next five entries correspond to removing quantities from the LoLa

layer: the invariant mass (purple), transverse momentum (gray), energy (red), minimum of all

distances (yellow), and the sum of all distances (turquoise). The largest drop in performance is

observed when removing the transverse momenta from the training, as was also observed above,

whereas removing any other quantity has a minor e↵ect as long as the others are kept. The

final legend entry, corresponding to the light green curve, is the performance after removing

everything but the sum and minimum of distances between four-vectors. This leads to a large

drop in e�ciency. Except for the jet pT, no single variable or CoLa column seems to contain a

Figure 10.18: Performance after removing components of CoLa or LoLa.

significant amount of information that cannot be replaced by any of the other variables. However,

when removing all information except for the distances between four-vectors, a significantly larger

performance drop is observed than when removing pT only. This implies that there is information

in LoLa besides the jet pT that improves the performance, but that this information can be

replaced by one of the other variables. Di↵erent combinations of LoLa variables therefore need to

be studied in the search for a clear performance drop or gain. A complimentary strategy is to

look at the LoLa and CoLa weights post-training to check which ones have the largest magnitude,

which would in a more direct way quantify the important features of the network. In order to

really understand what LoLa learns, further studies are therefore needed and are, as of this

writing, currently ongoing.
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Model

 106

• 4 layer DNN doing supervised learning with  
fixed-size input vectors 

- feed forward sequential network 

- Two novel layers (CoLa and LoLa) implementing 
Minkowski metric and “substructure” calculations  
(see later) and two fully connected layers 

• Technicalities 

- Keras with Theano backend (rewriting to 
Tensorflow) 

- Loss function: categorical crossentropy 

- ADAM optimiser (adapt learning rate of model 
parameters during training) 

• Train 200k + Test 60k + Val 60k on AWS  
(CMS Christmas Wishlist: GPU cluster!)

co_la_1_input: InputLayer
input:

output:

(None, 4, 20)

(None, 4, 20)

co_la_1: CoLa
input:

output:

(None, 4, 20)

(None, 4, 35)

lo_la_1: LoLa
input:

output:

(None, 4, 35)

(None, 7, 35)

flatten_1: Flatten
input:

output:

(None, 7, 35)

(None, 245)

dense_1: Dense
input:

output:

(None, 245)

(None, 100)

activation_1: Activation
input:

output:

(None, 100)

(None, 100)

dense_2: Dense
input:

output:

(None, 100)

(None, 50)

activation_2: Activation
input:

output:

(None, 50)

(None, 50)

dense_3: Dense
input:

output:

(None, 50)

(None, 2)

Input

CoLa

LoLa

Fully 
Connected 

I

Fully 
Connected 

II

Output
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Intro



y=0 y=!R

Bulk 
5D

e-!kR

Planck brane 

TeV brane 

4D 4D

SMGravity

Higgs is not elementaryGravity resides on other brane

Most popular candidates:  
 
          Warped Extra Dimensional theories           
 
 
 
 
 
 
 
 
 
 
 

Bulk Graviton heavy spin-2: 
Signature: GBulk→WW and GBulk→ZZ  

 
 

Composite Higgs models  

 
 
 
 
 
 
 
 
 
 
 
 

W’ and Z’ heavy spin-1:  
Signature: Z’→WW  and W’→WZ
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What could it be?

 
 
 
 
 

Mainly 
produced 
through  
q̄q 

annihilation

 
 
 
 
 

Mainly 
produced 
through  

gg fusion

2 TeV resonance

15 x

  8 x

more signal  
events at  
13 TeV!

With only 3 fb-1 of 13 TeV data, same discovery potential as 8 TeV dataset of 20 fb-1


