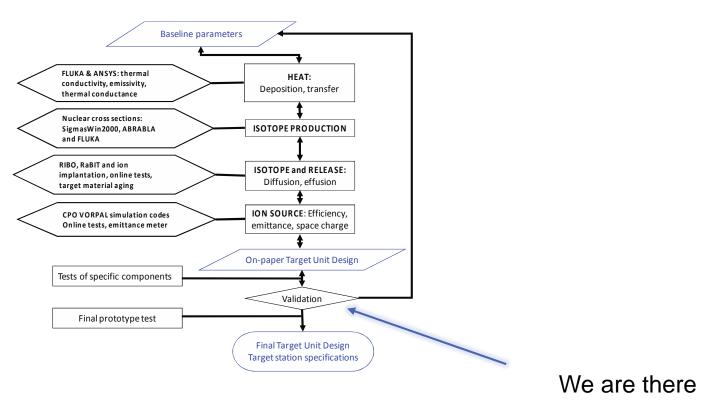
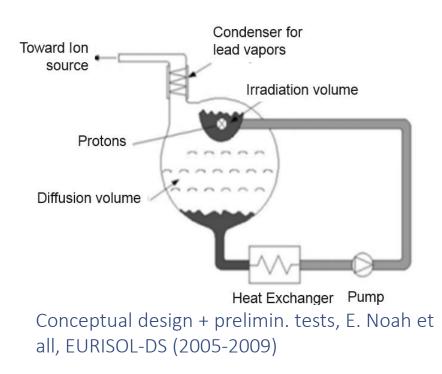
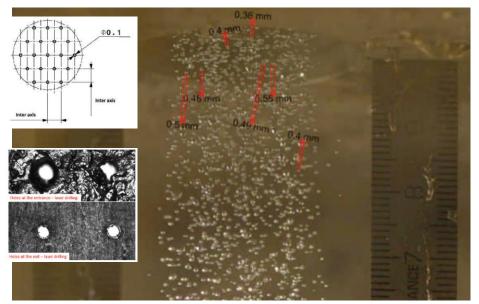
Review panel for LIEBE

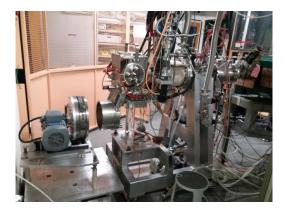

Thierry Stora – EN-STI-RBS

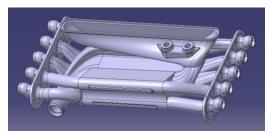

Methodology followed

From EURISOL-DS



Initial concept





A few highlights

Critical Weber number for small droplet formation from LBE → possibly solves the main Liquid target drawback of slow release

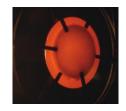
Test and beam at the offline separator

Double enclosure, etc

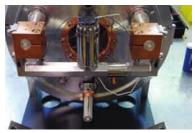
3D printed steel Heat Exchanger

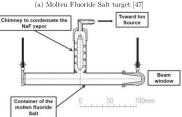
21 March 2019 LIEBE Review

Larger framework of high power targets: ISOL specificity : release of isotopes, "high T"


Melanie Delonca's PhD

Target name	Facility	Beam characteristics	Cooling system	Isotope release	Innovation	Safety measures	Schematic
ISAC Targets [21]	Triumf	proton beam - up to 25 kW constant power - continuous beam	Radiation from fins	Separated disks Material choice	Use of fins	Double enclosure	Fins Double envelope Primary beam Main Target part
Liquid Lead/Salt Targets [20]	Isolde	Proton beam - 3 kW average power - 11.7.10 ⁶ kW peak power - 0.8 Hz frequency	Radiation	Material choice (liquid) Splashing from shock waves induces droplets	Beam windows developed / chimney / liquid material	Double enclosure	Climmey Beam window Primery beam Main Target part
LiLit Target [22]	SARAF	proton beam - 2.3 kW average power - 20 kW peak power - 1 Hz frequency	Heat Exchanger	-	Heat Exchanger / Pump for liquid circulation / Li (metallic) window-less	Double enclosure	Dadie envilope Prosery team Prosery team Rector pumps Userts Userts Di teak Control team Control team Co
MEGAPIE Target [11]	PSI	neutron beam - up to 66.10 ³ kW constant power - continuous beam	Heat Exchanger	-	Heat Exchanger / Pump for liquid circulation	Double enclosure	Ream shifter 18 for and a conserve under the second s


And also some hard learning cases



1st high power oxide direct ISOL Target @ TRIUMF

1st salt target at ISOLDE-PSB

Special thanks to :

- CERN/external review panel
- Project partners
- Speakers

Looking forward to findings from the panel today

