
ISOLDE LIEBE review: 21<sup>st</sup> March 2019 Interesting beams for physics

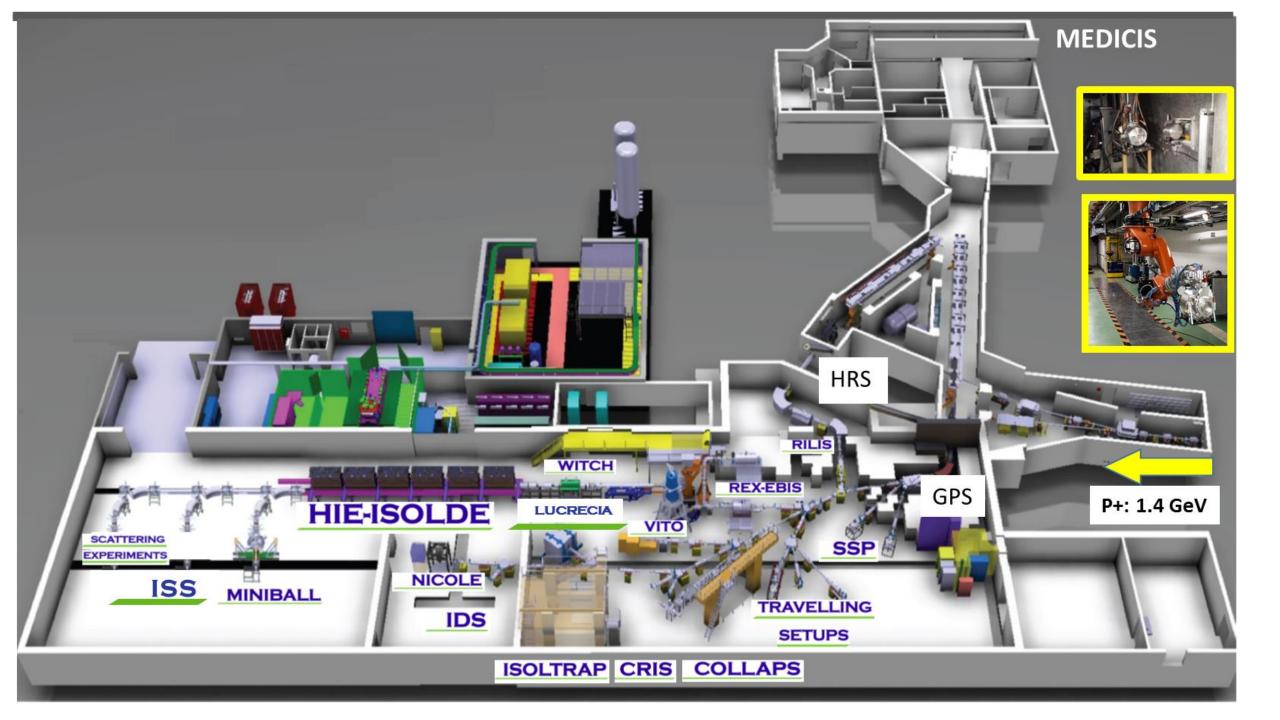




# **Open Questions**

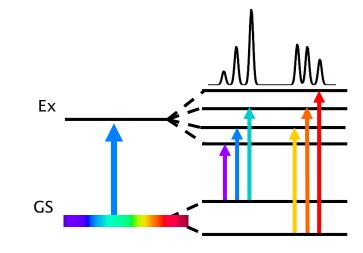
- How a nucleus is formed from their constituents
  - Strong force in nuclear medium
- How to explain the collective properties from the individual behaviour
  - Collective versus individual Properties
- Why do we have regular patterns in the behaviour of nuclei?
  - Identification of Symmetries

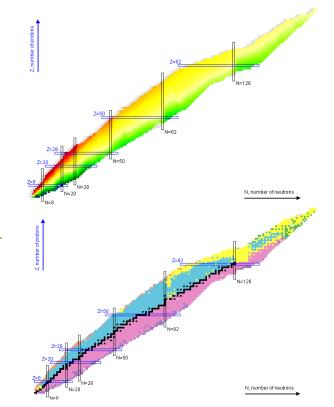


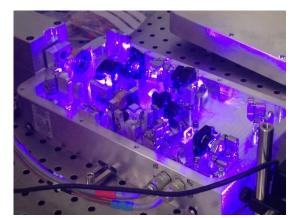


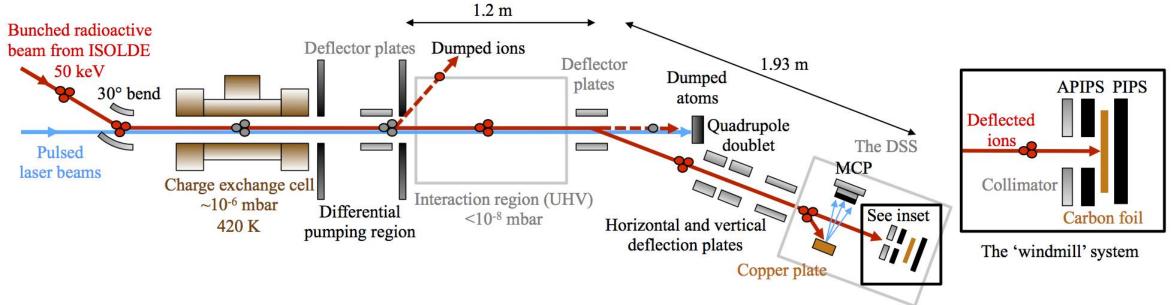

Observables:

- Basic ground state properties: mass, radius, moments J, μ, Q
- Half-life y decay process
- Transition probabilities

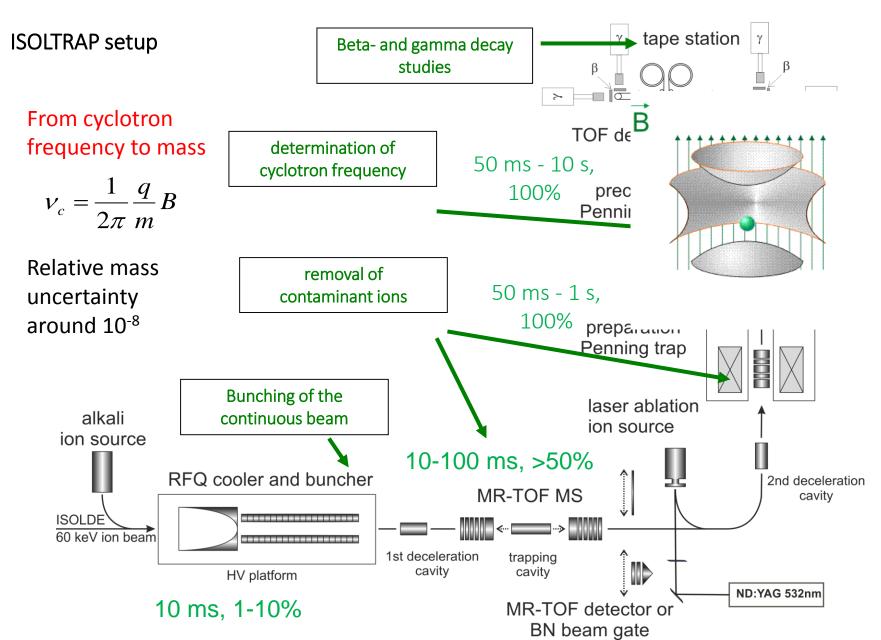

#### Theoretical Models:


Shell Model (magic numbers) Mean field Calculations (collective properties) *Ab Initio Calculations* (light nuclei)

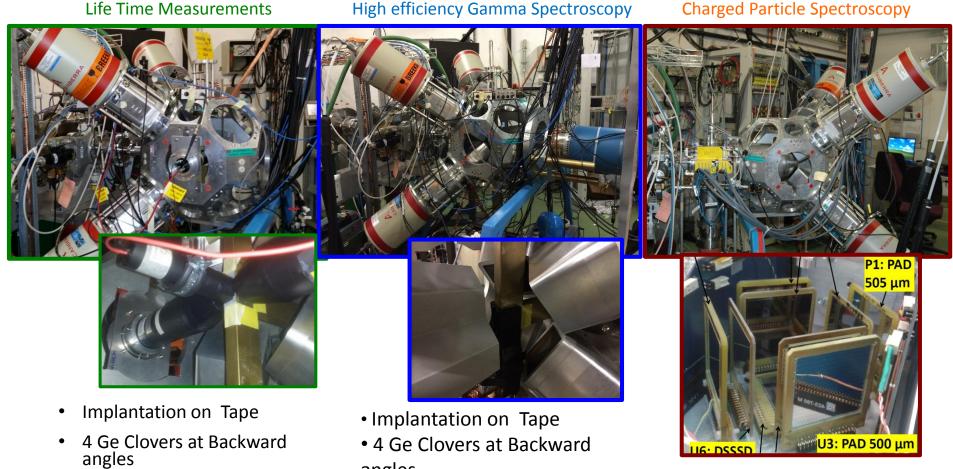




# Studying nuclear structure

- The atomic hyperfine structure gives you information on:
  - Nuclear spin
  - Magnetic moment
  - Quadrupole moment
  - Relative charge radii
- Method: COLLAPS, CRIS (laser spectroscopy)
- The mass of the nucleus gives you information on:
  - Binding energy
  - Proton and neutron separation energy
- Method: ISOLTRAP (mass spectrometry)
- Spectroscopy of the nucleus gives you information on:
  - Life time
  - Decay mechanism
  - Branching ratio
  - Nuclear reactions, ...
- Method: IDS, MINIBALL, ISS, SEC, TAS



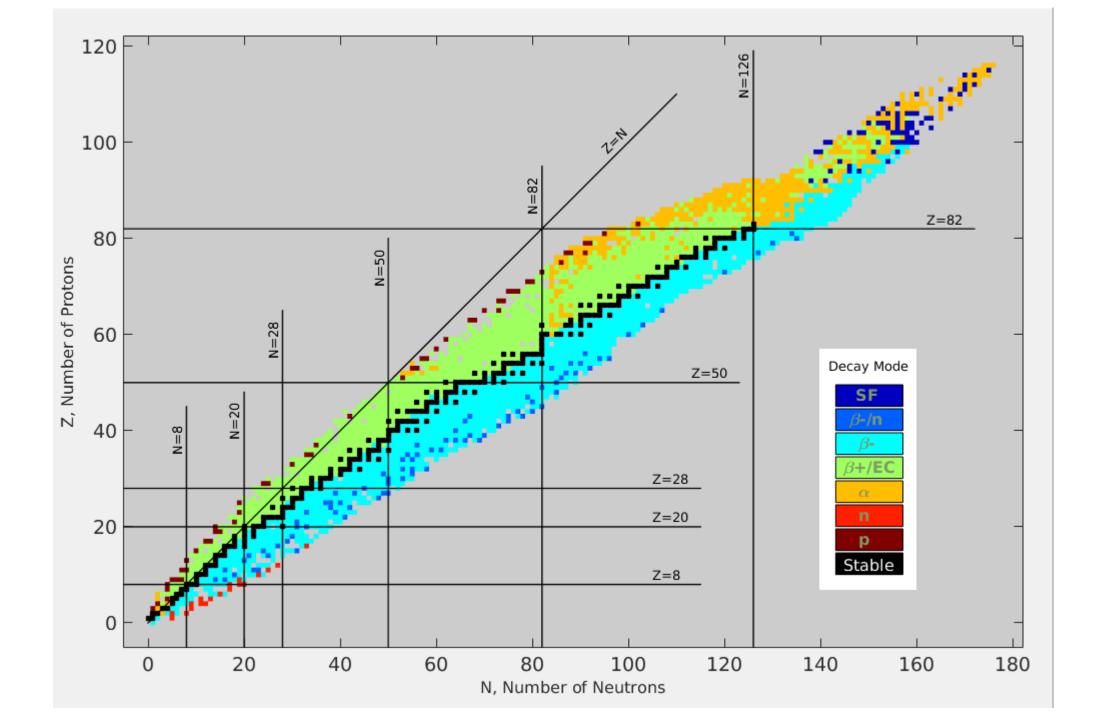





# Penning-trap mass spectrometry




# Versatile ISOLDE Decay Station (IDS)



- 2 LaBr3
- 1 plastic scintillator ٠
- Data on <sup>129</sup>In, 34Mg, 34Al.. •

- angles
- 1Miniball Detector (triple cluster)
- 3 plastic scintillators
- <sup>207,208</sup>Hg, Mn

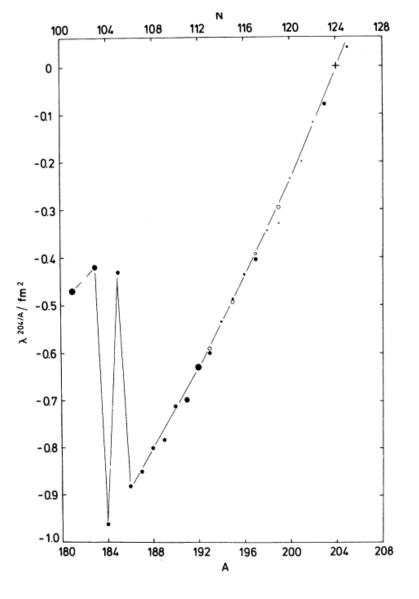
- Implantation on C foil
- 4 Ge Clovers at Forward angles
- Si box



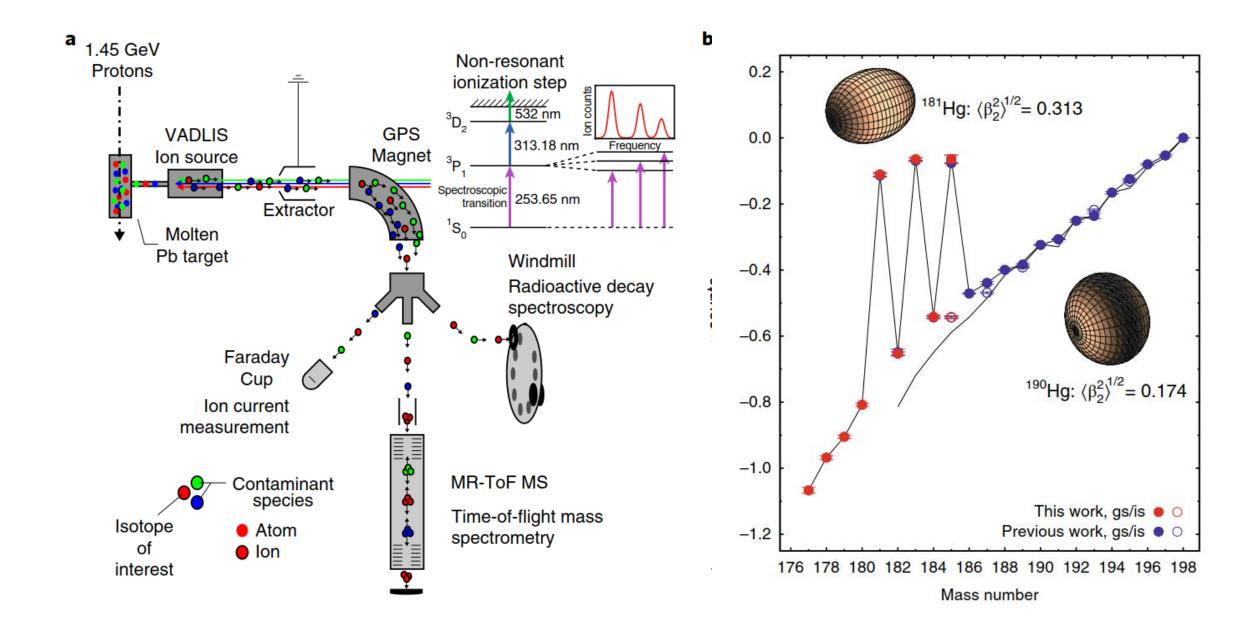


nature

physics


178Pb 179Pb 180Pb 181Pb 182Pb 183Pb 184Pb 185Pb 186Pb

LETTERS https://doi.org/10.1038/s41567-018-0292-8


184Bi 185Bi 186Bi 187Bi

### Characterization of the shape-staggering effect in mercury nuclei

B.A.Marsh<sup>®1\*</sup>, T.Day Goodacre<sup>1,2,18</sup>, S.Sels<sup>®3,18</sup>, Y.Tsunoda<sup>4</sup>, B.Andel<sup>®5</sup>, A.N.Andreyev<sup>6,7</sup>, N.A.Althubiti<sup>2</sup>, D.Atanasov<sup>8</sup>, A.E.Barzakh<sup>9</sup>, J.Billowes<sup>2</sup>, K.Blaum<sup>8</sup>, T.E.Cocolios<sup>2,3</sup>, J.G.Cubiss<sup>®6</sup>, J.Dobaczewski<sup>6</sup>, G.J.Farooq-Smith<sup>2,3</sup>, D.V.Fedorov<sup>®9</sup>, V.N.Fedosseev<sup>®1</sup>, K.T.Flanagan<sup>2</sup>, L.P.Gaffney<sup>®3,10</sup>, L.Ghys<sup>3</sup>, M.Huyse<sup>3</sup>, S.Kreim<sup>8</sup>, D.Lunney<sup>11</sup>, K.M.Lynch<sup>1</sup>, V.Manea<sup>8</sup>, Y.Martinez Palenzuela<sup>3</sup>, P.L.Molkanov<sup>9</sup>, T.Otsuka<sup>3,4,12,13,14</sup>, A.Pastore<sup>6</sup>, M.Rosenbusch<sup>13,15</sup>, R.E.Rossel<sup>1</sup>, S.Rothe<sup>1,2</sup>, L.Schweikhard<sup>15</sup>, M.D.Seliverstov<sup>9</sup>, P.Spagnoletti<sup>10</sup>, C. Van Beveren<sup>3</sup>, P. Van Duppen<sup>3</sup>, M. Veinhard<sup>1</sup>, E. Verstraelen<sup>3</sup>, A. Welker<sup>16</sup>, K. Wendt<sup>17</sup>, F. Wienholtz<sup>15</sup>, R.N. Wolf<sup>8</sup>, A.Zadvornaya<sup>3</sup> and K.Zuber<sup>16</sup>

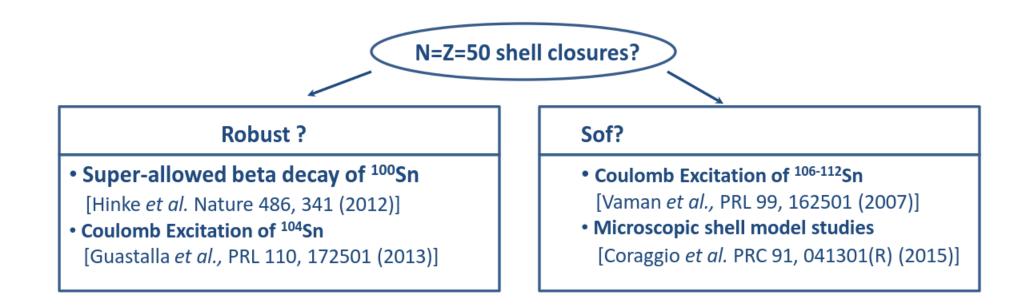


# Neutron deficient Hg



#### Neutron deficient Sn

| z  |      |      |      |      |       |       |       |                | 108 <b>X</b> e | 109 <b>X</b> e | 110 <b>X</b> e | 111 <b>X</b> e | 112Xe | 113Xe | 114 <b>X</b> e | 115 <b>X</b> e | 116 <b>X</b> e |
|----|------|------|------|------|-------|-------|-------|----------------|----------------|----------------|----------------|----------------|-------|-------|----------------|----------------|----------------|
|    |      |      |      |      |       |       |       |                | 1071           | 1081           | 1091           | 1101           | 1111  | 1121  | 1131           | 114I           | 1151           |
| 52 |      |      |      |      |       |       |       | 105Te          | 106Te          | 107Te          | 108Te          | 109Te          | 110Te | 111Te | 112Te          | 113Te          | 114Te          |
|    |      |      |      |      |       |       | 103Sb | 104Sb          | 105Sb          | 106Sb          | 107Sb          | 108Sb          | 109Sb | 110Sb | 111Sb          | 112Sb          | 113Sb          |
| 50 | 99Sn |      |      |      | 100Sn | 101Sn | 102Sn | 103Sn          | 104Sn          | 105Sn          | 106Sn          | 107Sn          | 108Sn | 109Sn | 110Sn          | 111Sn          | 112Sn          |
|    |      |      | 97In | 98In | 99In  | 100In | 101In | 102In          | 103In          | 104In          | 105In          | 106In          | 107In | 108In | 109In          | 110In          | 111 In         |
| 48 |      | 95Cd | 96Cd | 97Cd | 98Cd  | 99Cd  | 100Cd | 101 <b>C</b> d | 102Cd          | 103Cd          | 104Cd          | 105 <b>C</b> d | 106Cd | 107Cd | 108Cd          | 109Cd          | 110Cd          |
|    | 93Ag | 94Ag | 95Ag | 96Ag | 97Ag  | 98Ag  | 99Ag  | 100Ag          | 101Ag          | 102Ag          | 103Ag          | 104Ag          | 105Ag | 106Ag | 107Ag          | 108Ag          | 109Ag          |
| 46 | 92Pd | 93Pd | 94Pd | 95Pd | 96Pd  | 97Pd  | 98Pd  | 99 <b>P</b> d  | 100Pd          | 101Pd          | 102Pd          | 103 <b>P</b> d | 104Pd | 105Pd | 106Pd          | 107Pd          | 108Pd          |
|    | 46   |      | 48   |      | 50    |       | 52    |                | 54             |                | 56             |                | 58    |       | 60             |                | N              |


- Shell evolution around N=Z=50 [Faestermann et al., Prog. Part. Nucl. Phys. 69, 85 (2013)]
- Heaviest self-conjugate doubly magic nucleus? [Guastalla et al., PRL 110, 172501 (2013)]
- Proton-neutron correlations, pairing correlations [Dean and Hjorth-Jensen, RMP 75, 607 (2003)]
- Superallowed beta decay [Hinke et al. Nature 486, 341 (2012)]
- End of the rp process [Schatz et al. PRL 86, 0031-9007 (2001)]

### **Open questions**

o Shell evolution towards N=Z=50 ?

• Ordering of shell model orbits ?

o Robustness of N=Z=50 shell closures?



#### EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

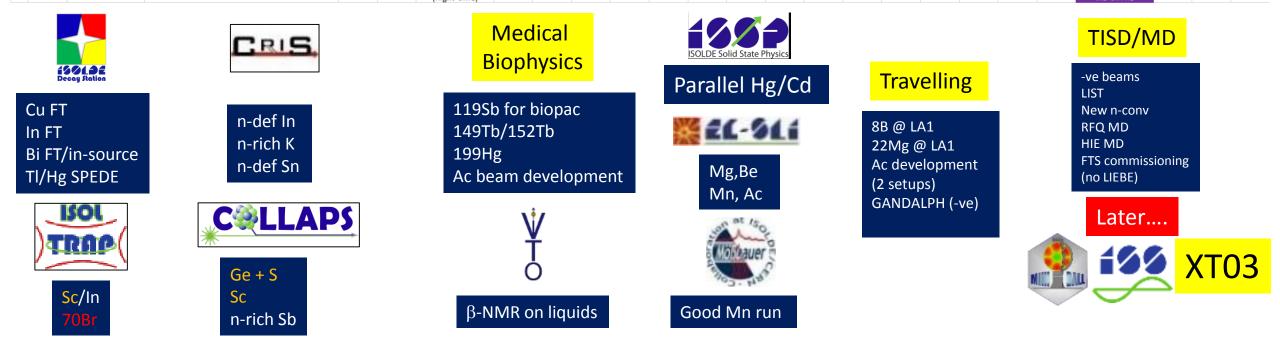
Laser Spectroscopy of neutron-deficient Sn isotopes

January 11, 2016

#### EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee for experiments with HIE-ISOLDE

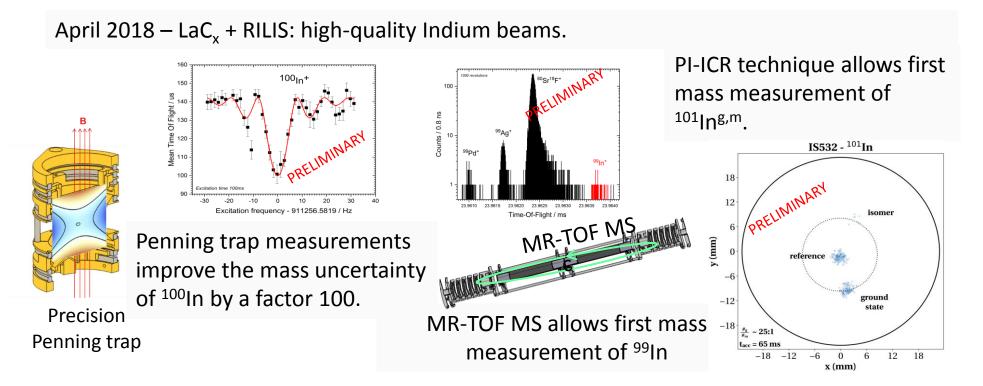
#### Transfer Reactions and Multiple Coulomb Excitation in the <sup>100</sup>Sn region


J. Cederkall<sup>1</sup>, D. Di Julio<sup>1</sup>, C. Fahlander<sup>1</sup>, R. Hoischen<sup>1</sup>, J. Gellanki<sup>1</sup>, P. Golubev<sup>1</sup>, D. Rudolph<sup>1</sup>, S. Siem<sup>2</sup>, A. Goergen<sup>2</sup>, G. Tveten<sup>2</sup>, P. A. Butler<sup>3</sup>, D. T. Joss<sup>3</sup>, M. Scheck<sup>3</sup>, A. Blazhev<sup>4</sup>, J. Jolie<sup>4</sup>, N. Braun<sup>4</sup>, P. Reiter<sup>4</sup>, N. Warr<sup>4</sup>, D. G. Jenkins<sup>5</sup>, R. Wadsworth<sup>5</sup>, S. Freeman<sup>6</sup>, J. Iwanicki<sup>7</sup>, P. Napiorkowski<sup>7</sup>, M. Zielinska<sup>7</sup>, M. Huyse<sup>8</sup>, P. van Duppen<sup>8</sup>, R. Krucken<sup>9</sup>, J.van de Walle<sup>10</sup>, T. Davinson<sup>11</sup>, Th. Kroll<sup>12</sup>, J. Leske<sup>12</sup>, N. Pietralla<sup>12</sup>, T. Grahn<sup>13</sup>, D. Voulot<sup>14</sup>, F. Wenander<sup>14</sup>

Excited state properties of neutron deficient Sn towards 100Sn

Ground state properties of neutron deficient Sn towards 100Sn.

#### GPS schedule 2018

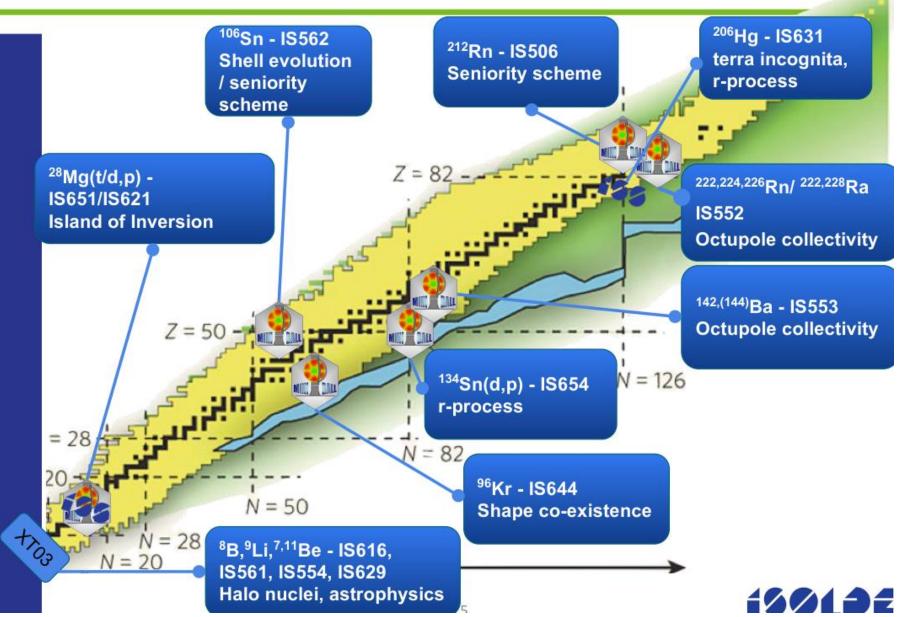





#### HRS schedule 2018

|    |               | Ap       | ril      |                 | May           |                    |             |         | June        |     |             |             | July                   |    |                |            | August      |          |             |          | September  |           |          |           | October  |                        |                    |            |                | November                |                 |                 |
|----|---------------|----------|----------|-----------------|---------------|--------------------|-------------|---------|-------------|-----|-------------|-------------|------------------------|----|----------------|------------|-------------|----------|-------------|----------|------------|-----------|----------|-----------|----------|------------------------|--------------------|------------|----------------|-------------------------|-----------------|-----------------|
| W  | K 15          | 16       | 17       | 18              | 19            | 20                 | 21          | 22      | 23          | 24  | 25          | 26          | 27                     | 28 | 29             | 30         | 31          | 32       | 33          | 34       | 35         | 36        | 37       | 38        | 39       | 40                     | 41                 | 42         | 43             | 44                      | 45              | 46              |
| M  | D g           | 16       | 23       | #651 2r0 HP 3.0 | #652 ZrO HP 7 | #518<br>UC-Ta/W 14 | 21          | . 28    | 4           | 11  | 18          | 25          | #658 UC Ta<br>(+CF4) 2 | 9  | 16             | 23         | 30          | 6        | 13          | 20       | 27         | 3         | 10       | 0 17      | 24       | #662 UC n <sub>1</sub> | IS638 <sub>8</sub> | 15         | 22             | # 642 UC n(ew)-<br>conv | TISD ₅          | p* off060012    |
| TU |               |          |          | May-01          |               |                    |             |         | #626 Ta - W | TBC | Tech Stop   |             |                        |    |                |            |             |          |             |          |            |           |          | Tech stop |          |                        |                    | (tbc) UC   | N <sup>t</sup> | TISD                    | TISD            | Prep for        |
| W  | E             |          |          | TISD            |               |                    |             |         |             |     |             | Machine     |                        |    | 637 UC W (+CF4 |            |             | WICE COM |             |          |            |           | IS654    |           | 199      |                        |                    |            | Ť              |                         | #672 CaO<br>VD7 | winter          |
| TH |               |          | IKOL     |                 | Ascension     | Ŵ                  |             | CRIS    |             |     | Machine     | development | 1991 Decey Relies      |    |                | IS552      | #631 LaC Ta |          | #639 LaC Ta |          |            | Jeune     |          |           | $\sim$   |                        |                    | tuning IDS | IS 645         |                         |                 | Physics         |
| FR | CRIS,         | #627Ta-W | TRAC     | CULLAPS         | JOU           | Ť                  | #654 UC - W |         | CIFLLAPS    |     | development |             | IS650                  |    |                | IS553:     |             | IS562:   |             | CRIS.    | #643UC+345 | 134Sn @   | #623 SiC |           | IS621    | CHLLAPS                |                    | VITO       | IS 641         |                         |                 | (separate file) |
| SA |               |          |          |                 | )TRAP(        | Ó                  |             |         | CHELAPS     |     |             |             | IS637                  |    |                | 4.1MeV/    |             | 4.4MeV/  |             |          |            | 7.33MeV   |          | @         | 28Mg@9.5 | <u> </u>               |                    |            |                |                         | WISArD          |                 |
| SU | IS639         |          | IS532    | IS623           | IS642         | IS645              |             | IS620   | IS649       |     |             |             | IS608                  |    |                | u          |             | u        |             | IS613    |            | /u        |          | 9.5MeV/u  | MeV/u    | IS635                  |                    |            | end Satnight   | t)                      | LOI172          |                 |
|    | In RILIS      |          | Sc RILIS | RILIS test      | 70Br          | 26N a              |             | K beams | Sc RILIS    |     |             |             | RILIS: Bi              |    |                | 2xRa/142Ba |             | Sn RILIS |             | Sn RILIS |            | 134Sn+34S |          | RILIS     | S: Mg    | RILIS: Sb              |                    |            | RILIS: TI      |                         | RILIS: for TISD |                 |
|    | (#640 LaC - n | )        | In RILIS | Ge 34S          |               |                    |             |         |             |     |             |             |                        |    |                |            |             |          |             |          |            |           |          |           |          |                        |                    | MD o       | n HIE          |                         |                 |                 |

### **ISOLTRAP** : experimental campaigns in 2018




• <sup>52-55</sup>Sc run (RILIS+Ta-foil target)

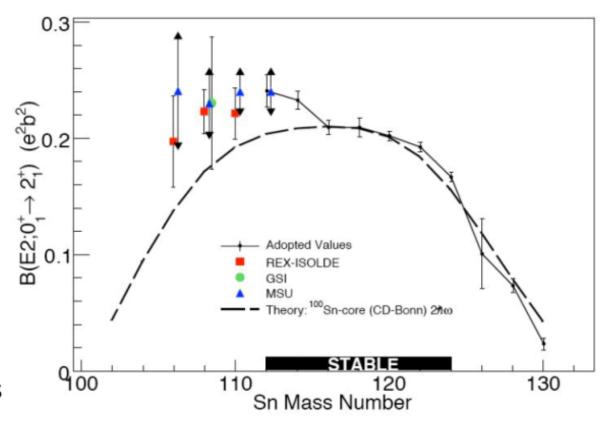


- Confirms that neutron rich Sc up to A=52 are produced 😳
- Stable Ti-V-Cr isobaric contamination too strong ☺
- Impossible to measure the Sc isotopes of interest
- Run redirected to In 🙂 🙂
- $^{70}$ Br  $Q_{ec}$  value : Mai 2018
  - lower production rate and higher than expected contamination  $\boldsymbol{\Im}$

# Physics campaign (2018)



# MB: IS562 - <sup>106</sup>Sn


Transfer Reactions and Multiple Coulomb Excitation in the <sup>100</sup>Sn Region,

J. Cederkäll *et al.* 

 Study discrepancies of B(E2)s in light Sn isotopes (textbook seniority scheme example!)

### Experiment 8.-13.8.2018:

- <sup>106</sup>Sn @ 4.404 MeV/u on <sup>206</sup>Pb target
- Contamination from <sup>106</sup>In
- Obtained very good statistics on 2<sup>+</sup>->0<sup>+</sup>
- 4<sup>+</sup>->2<sup>+</sup> overlaps with <sup>206</sup>Pb transition but may be recovered using more careful particle selection by reaction kinematics



### Sensitivity, yield and impurities

All the aforementioned techniques have their own specific limitations/requirements:

- CRIS sensitive to ~100 ions / s
- Requires bunched beam (i.e. HRS)
- ISOLTRAP sensitive to ~0.5 ions/s (if clean)
- Coulex requires at least 100 ions/s at setup i.e. at least 1000/s yield (ideally x10 more both ends)
- Impurities can always be a problem either isobaric, double-charged etc etc from target or products of ion source
- Release information can be crucial for experiments: detailed yield analysis required.