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Chapter 112979

Collimation system2980

2981

11.1 Introduction2982

In order to achieve a high luminosity at 50 TeV, a high beam current is required in the FCC-hh. Combined2983

with the 50 TeV particle energy, this results in a stored beam energy of about 8.3 GJ, assuming the2984

baseline parameters of 10400 bunches of 1011 protons per bunch. This is about a factor 24 higher than2985

the nominal LHC and a factor 12 higher than the HL-LHC. Therefore, the FCC-hh beams are highly2986

destructive and open up a new regime in terms of machine protection considerations. Absorbing the2987

energy of even very small beam losses becomes challenging.2988

To achieve the high per particle energy, strong magnetic fields are needed, which demands the2989

usage of superconducting magnets operating at cryogenic temperatures. A loss of a small fraction of2990

the beam can deposit enough energy such that the induced heat in a cold magnet moves it to a normal-2991

conducting state, known as a quench. To avoid this, a collimation system must be installed to protect the2992

magnets from beam losses, which is the main topic of this chapter. The development of the design of the2993

various aspects of FCC-hh collimation has been documented in previous publications [15, 26, 27, 86].2994

In addition to the regular cleaning losses that are expected to occur routinely, the collimation2995

system must also protect machine elements against damage during irregular and accidental beam losses2996

that could occur, e.g. injection and extraction kicker miss-fires, or failures of other elements. If needed,2997

the collimators can be sacrificed in order to prevent beam losses into more critical locations, such as the2998

experimental detectors. Furthermore, the collimation system should also localise the losses and hence2999

the radiation dose to controlled areas, and if needed help in reducing machine-induced experimental3000

backgrounds, all while keeping the machine impedance within acceptable limits. This latter point is3001

discussed in sections 10.3.5 and 10.3.6.3002

Beam loss rates in the FCC-hh are very hard to predict and depend on a number of unknowns, but3003

regular operation and tuning of the machine requires that a reasonable range of beam lifetimes (BLT) can3004

be handled without a beam dump, quench or collimator damage. For the design and specification of the3005

collimation system, we assume as a target that the FCC-hh should be able to sustain betatron losses due3006

to a BLT drop down to 12 minutes over a time period of 10 s, and a BLT of 1 h in steady state. The former3007

scenario corresponds to an extreme instantaneous beam loss power of 11.6 MW. These design scenarios3008

have been taken over from the LHC design [194]. Although LHC operation in Run 2 has very rarely3009

resulted in such pessimistic losses, these criteria are conservatively taken over for the FCC-hh design.3010

For off-momentum losses, the most critical scenario is taken to be the losses at the start of the3011

energy ramp, where any off-energy tail outside of the RF buckets is rapidly lost as the acceleration3012

starts [195]. Based on LHC experience, we use as a design criterion for the collimation system that the3013

machine should be able to routinely handle losses of 1% of the total beam intensity over 10 s [196]. This3014
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assumes that the rate of change of the energy at the start of the ramp is similar to that of the LHC.3015

The baseline FCC-hh collimation system is based on the experience of the design and operation3016

of the LHC system [17–21, 197, 198], as well as foreseen upgrades for HL-LHC [23, 25, 199–201].3017

The baseline concept and layout of the collimation insertions for FCC-hh are described in3018

Sec. 11.2, and the geometric considerations for protecting the machine aperture are shown in Sec. 11.3.3019

The cleaning performance of the system is assessed in Sec. 11.4 through tracking simulations, which are3020

used to estimate the resulting beam loss pattern and power loads around the ring for various expected3021

loss scenarios. Detailed energy deposition studies are presented for the most critical cold region in3022

Sec. 11.5 and for the warm betatron cleaning insertion in Sec. 11.6. The thermo-mechanical response of3023

the most loaded collimators during expected loss scenarios is investigated in Sec. 11.7, while an outlook3024

on future developments is given in Sec. 11.8.3025

11.2 Baseline collimation concept and layout3026

Two main collimation insertions are used; a betatron system in IRJ for removing particles that have a3027

large amplitude in transverse phase space, and a momentum collimation system in IRF, for removing3028

particles with a large rigidity offset. In addition to these two insertions, collimators exist around each3029

experimental insertion, for both the incoming and outgoing beams. Finally collimators are placed around3030

the injection and extraction regions to protect against failure cases.3031

In IRJ and IRF, a multi-stage cleaning system is used, which is a scaled-up version of the LHC3032

system. It has primary collimators (TCP) closest to the beam, followed by secondary collimators (TCS),3033

and absorbers (TCLA). As for the LHC, the main bottleneck in terms of cleaning losses is expected for3034

the FCC-hh to be in the dispersion suppressor (DS) downstream of the betatron collimation insertion,3035

where the dispersion generated due to the superconducting dipoles increases rapidly. Protons that have3036

lost energy in single diffractive scattering in the TCP and have a small enough angular deviation to bypass3037

the TCSs are at risk to be lost there [21]. In order to alleviate these losses, it is planned to install DS3038

collimators (TCLD) in the cold region, similarly to the upgrades planned for HL-LHC [23]. It is planned3039

to install TCLDs in IRF as well, and also downstream of the experiments in order to catch off-energy3040

collsion debris that otherwise risk to put a too high load on the DS. The optics and collimator positions in3041

IRJ and IRF are shown in Figures 11.1–11.4, and the full list of collimators with their names, positions,3042

materials, settings through the cycle, and orientations are shown in Table 11.1.3043

The baseline betatron collimation insertion is a scaling of the current LHC system, under the3044

constraint that there is a minimum mechanically feasible jaw gap size. In order to keep similar settings3045

as the LHC in units of beam σ, the smaller geometric emittance of the 50 TeV beam is compensated by3046

a larger β-function.3047
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Fig. 11.1: The optics in the betatron collimation
insertion - (IRJ) at injection configuration.
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Fig. 11.2: The optics in the betatron collimation in-
sertion (IRJ) at collision configuration.
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Fig. 11.3: The optics in the energy collimation in-
sertion - IRF at injection configuration.
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Fig. 11.4: The optics in the energy collimation in-
sertion (IRF) at collision configuration.

Therefore, all β-functions have been scaled by
√

EFCC
ELHC

=
√

50
7 ≈ 2.67. To achieve this, all3048

magnet lengths and separations have been increased by 2.67, and the total length of the insertion is3049

2.7 km. This ensures that the magnetic fields in the warm magnets are of the same magnitude and3050

therefore can be constructed. The increase in focusing required from the energy increase over the LHC3051

comes from the increase in magnetic length.3052

For the momentum cleaning insertion, the baseline is also a layout similar to the LHC but scaled3053

up by the same factor as the betatron system. This is the lattice used for the studies presented later in3054

this report. However, work on alternative designs is underway, and a first version of a new optics for the3055

off-momentum cleaning insertion has been conceived. This is based on an optimization of the normal-3056

ized dispersion at the off-momentum TCP, while keeping favourable phase advances to secondary and3057

tertiary collimators. This alternative design has shown some first promising results in terms of geometric3058

acceptance and protection of the downstream arc, however, more work is needed on the optimization of3059

potential aperture bottlenecks at injection, as well as tracking studies to optimize the collimator place-3060

ment.3061

The collimators for the present studies are assumed to be of a design similar to those used in3062

the LHC, i.e. pairs of movable collimator jaws constructed of sections of amorphous materials, with a3063

single tank per beam for each collimator. The requirements on infrastructure are also similar. Cooling3064

water is required, and the controls infrastructure needs to be adequately implemented and no sensitive3065

electronic components can be placed in areas where they risk radiation damage. A previous design3066

of the FCC-hh lattice, with the extraction kickers placed close to the collimators, was abandoned due3067

to the high radiation load to the kickers. Since the collimation insertion will be a high-radiation area,3068

remote inspection and handling capabilities would be highly beneficial in order to reduce the dose to3069

personnel. The TCPs and TCSs need to be rather robust. It is foreseen to use carbon-fibre composite3070

(CFC) for the TCPs and the first TCS, which are the most critical devices in terms of robustness, while3071

molybdenum-graphite (MoGr) with a 5 µm coating of Mo is used for the downstream TCSs, which are3072

less loaded. This allows the machine impedance to be reduced to acceptable levels. This material, which3073

is foreseen to be used in the HL-LHC [23], has a significantly lower impedance than CFC. In this report3074

it is assumed that such collimators can be reliably produced within specifications. Using coated graphite3075

has been considered as a backup solution. Iterations on the mechanical design, with improvements on3076

the LHC solution, could be done in the future to ensure optimum response from the whole collimator3077

structure to the expected loads.3078

Other collimators, such as the TCLAs and the tertiary collimators (TCTs) in the experimental in-3079

sertions, are further away from the beam center and have lower requirements on robustness but higher3080

requirements on absorption. As in the LHC, these collimators are made of a heavy tungsten alloy (Iner-3081

met 180).3082
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Collimator Material Number Injection (nσ) Collision (nσ)

β TCP CFC 2 7.6 7.6
β TCSG CFC/MoGr 11 8.8 8.8
β TCLA W 5 12.6 12.6
β TCLD W 3 21.0 35.1
δ TCP CFC 1 10.8 18.7
δ TCSG MoGr 4 13.0 21.7
δ TCLA W 5 14.4 24.1
δ TCLD W 4 21.0 35.1

TCT W 12 14.0 10.5
experimental TCLD W 8 21.0 35.1

TCDQ CFC 1 9.8 9.8
extraction TCLA W 2 11.8 11.8
extraction TCLD W 1 21.0 35.1

Table 11.1: The FCC-hh collimator materials, numbers (per beam), and settings throughout the cycle.
The settings are given for the reference value of 2.2 µm of the normalized emittance.

After initial simulation results, the design diverged from the LHC system, which has three betatron3083

TCPs (in the horizontal, vertical and skew planes). Initial energy deposition simulations showed that the3084

power load from secondary particles on the skew TCP was too high. The collimator would have been3085

unlikely to survive. To achieve acceptable power loads, some changes have been done to the collimator3086

materials and design. The length of the primary betatron collimators has been reduced from 60 cm3087

to 30 cm and their thickness has been increased from 2.5 cm to 3.5 cm. This reduces the power load3088

inside the collimator jaws and support structure. Removal of the skew TCP allows the secondary particle3089

showers to expand and reduce their energy density. The subsequent collimator that these secondary3090

particles will hit is the first secondary collimator. The initial energy deposition simulations found that3091

the secondary particles would not directly hit the collimator jaw, but the mounting mechanism behind3092

it. Because of this, the thickness of the jaws of the first secondary collimator has been increased from3093

2.5 cm to 4.5 cm.3094

Particles interacting with the collimation system can lose energy, but survive and exit the collima-3095

tion region. Following the collimation insertions, the dispersion is matched to that of the arc region in3096

the DS. Inside the DS, the dispersion rapidly rises. Any sufficiently off-momentum particles will impact3097

the beam pipe aperture due to the dispersion. This will quench magnets if dedicated protection is not in-3098

stalled. Because of this, DS collimators, known as TCLDs are installed in this region specifically to catch3099

these off-momentum particles, as planned for HL-LHC [23]. Each experimental IR has 2 sets of TCLDs3100

installed, and due to the higher particle load in the collimation regions these have additional TCLDs. In3101

the betatron insertion, 3 TCLDs are used, and in the energy collimation, 4 are used. In addition, due3102

to optical changes between injection and collision, the peak dispersion position changes between the3103

injection and collision optics. The additional TCLD (over the HL-LHC number) is also required to cover3104

both the injection and collision case.3105

In the experimental straight sections, it was found that one set of TCT collimators was insufficient.3106

Beam losses were found to take place both inside the matching section, and also between D1 and D2.3107

An extra pair of TCT collimators were installed in the matching part of the straight section, in order to3108

catch these losses. This should also reduce experimental backgrounds.3109

For the extraction insertion, debris from the extraction protection (TCDQ) was found to impact the3110

beam pipe at the end of the straight section. The level of losses in this region was found to be excessive3111

for a 12 min BLT. To protect the machine, an extra pair of TCLA type collimators were added in the3112
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straight section after the TCDQ; one in the horizontal and one in the vertical plane. In addition, a TCLD3113

type collimator was added at the start of the arc, which provides additional protection in case of a failure3114

of the dump system.3115

11.3 Machine aperture3116

For the collimation system to work properly, it must be ensured that the beam-stay-clear around the FCC-3117

hh ring is sufficient. This is usually most critical at injection energy in the arcs, where the geometric3118

emittance is larger. Aperture bottlenecks usually also arise in the inner triplet at top energy, when the3119

β-functions are squeezed at the collision points.3120

To study the available aperture, we use the same approach as for the LHC and HL-LHC [93, 202,3121

203]. The aperture module of MAD-X [91] is used to quantify the smallest distance, in units of beam3122

σ, between the beam centre and the mechanical aperture that is found anywhere on the 2D cross section3123

of the beam screen. The calculations are performed at several longitudinal locations in each element in3124

order to obtain the minimum beam-stay-clear as a function of s. Various imperfections are included: a3125

radial closed orbit offset xco, a fractional change kβ in beam size from β-beating, a momentum offset δp,3126

and a relative parasitic dispersion farc coming from the arc.3127

The values assumed for these tolerances are shown in Table. 11.2. Since it is very hard to accu-3128

rately estimate these for FCC-hh, they have been derived from the HL-LHC assumptions [93, 202, 203],3129

which in turn have been shown to be pessimistic compared to the aperture measurements performed in3130

the LHC [204–213]. Similarly, the alignment and manufacturing tolerances of each magnet have been3131

adopted from similar magnets of the HL-LHC. It should be noted that the values of the momentum off-3132

sets are pessimistic compared to the calculated RF bucket height in Sec. 9. This gives a small additional3133

safety margin, however, it should be noted that these values may change in the future. The last line3134

of Table 11.2 shows the protected aperture, i.e. the smallest calculated aperture that is allowed in any3135

machine element. This values has, as working assumption, been re-scaled from HL-LHC by the ratio3136

of the square-root of the emittances. This assumption is, however, not trivial and needs to be studied in3137

greater detail. The value of the protected aperture depends on the distribution and intensity of the halo3138

that escapes the collimation system, as well as the halo that escapes the protection devices during fail-3139

ures, which are combined with detailed knowledge on the quench limit and damage limits of the machine3140

elements [203]. Such studies have have not yet been performed in detail for the FCC and, pending them,3141

the HL-LHC parameters are assumed.3142

Table 11.2: The parameters used in the MAD-X model for FCC-hh aperture studies at top energy and
injection.

Parameter set FCC-hh injection (3.3 TeV) FCC-hh top energy (50 TeV)
Primary halo extension 6 σ 6 σ
Secondary halo, hor./ver. 6 σ 6 σ
Secondary halo, radial 6 σ 6 σ
Normalised emittance εn 2.2 µm 2.2 µm
Radial closed orbit
excursion xco 2 mm 2 mm
Momentum offset δp 6× 10−4 2× 10−4

β-beating fractional
beam size change kβ 1.05 1.1
Relative parasitic
dispersion farc 0.14 0.1
Protected aperture (σ) 13.4 15.5
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In the calculations, the present design of the arc beam screen as of July 2018 has been adopted,3143

as shown in Fig. 11.5. It should be noted that all arc dipoles are straight, which gives rise to a reduction3144

in aperture due to the sagitta. This aperture reduction has been pessimistically modelled as a constant3145

decrease of mechanical aperture of half of the sagitta on each side of the beam screen all along the length3146

of the magnets. A sagitta of 2.524 mm was used for the aperture calculations. About 0.6 m downstream3147

of every arc dipole a synchrotron radiation absorber protects the interconnection to the next magnet3148

(see [100, Section 3.3.2]). While dimensions of the inner chamber of this absorber are the same as for3149

the beam screen, the slits are not as deep and the sagitta is larger due to the longer distance from the3150

dipole centre, resulting in a horizontal aperture reduction of 1.630 mm at the absorbers.3151

Fig. 11.5: The transverse cross section of the arc beam screen, the MAD-X model for the aperture
calculations is outlined in red.

Several assumptions had to be made on the mechanical aperture, in particular that similar toler-3152

ances on manufacturing and alignment apply as in the LHC [214]. The FCC-hh arc beam screen in3153

Fig. 11.5 features antechambers to channel synchrotron radiation. This was considered unnecessary for3154

the straight section magnets, thus a scaled LHC-like beam screen design with a larger free aperture was3155

assumed. Some detailed studies are required to determine whether this is justified for straight section3156

magnets close to the arcs that might still receive some synchrotron radiation. The aperture tolerances3157

were adapted from LHC elements. The vacuum chamber apertures in the warm sections for collimation3158

and extraction should also be reviewed.3159

Using the parameters in Table 11.2, the aperture around the FCC-hh was evaluated at injection3160

and top energy using the optics version 10. The results show that the apertures of the full ring, including3161

the triplets in front of the high-luminosity experiments, are above the protected aperture. The top-energy3162

triplet aperture at the high-luminosity experiments in IRA and IRG is shown in Fig. 11.6 for ultimate3163

optics with β∗ = 30 cm, and it can be seen that there is still some margin left. This margin could3164

potentially be used to squeeze the optics further down to around β∗ ≈ 21 cm. This includes an increased3165

crossing angle to keep the normalized separation constant.3166

At injection, most elements around the ring are found within specification, in particular the arcs, in3167

spite of the pessimistic modelling of the beam screen. An example is shown in Fig. 11.7. A few elements3168

do not meet the criterion and have a too small beam-stay-clear. These are listed in Table 11.3. As can3169

be seen, there are only three types of magnets affected: orbit correctors in the extraction and betratron3170
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Fig. 11.6: The calculated aperture at top energy, using the ultimate optics with β∗ =30 cm, as a function
of distance s in the high-luminosity experiments in IRA and IRG, shown together with the criterion for
the minimum aperture.

collimation section (elements starting with MCB) as well as matching quadrupoles (MQMO) and tuning3171

quadrupoles (MQTLH) of the betratron collimation section. Figure 11.8 shows the aperture bottlenecks3172

in IRJ. The aperture issues of the MCB and MQMO magnets can simply be solved by replacing them3173

with larger aperture magnets of the MCBY and MQY classes respectively. These magnet classes are3174

already used in various locations along the ring and provide sufficient strengths. The MQTLH magnet3175

issues also have to be solved for the final design but are not believed to be serious show-stoppers.3176

Previous lattice versions showed aperture limitations in the dispersion suppressors where the optics3177

required a certain degree of freedom in terms of beam size but the aperture is given by the arc dipole3178

design. Several mitigation measured have been proposed if these issues reemerge as the lattice evolves.3179

One such measure involves pursuing the studies to refine the aperture criterion and the parameters in3180

Table 11.2 and to investigate whether any of them can be improved. The mechanical tolerances on3181

the manufacturing and alignment could possibly also be improved. In particular, in the few concerned3182

locations, magnets could be installed that are better than the specification, either by sorting the magnets3183

and simply taking the best ones among the full production, or by designing a special beam screen in these3184

magnets only.3185
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Fig. 11.7: The calculated aperture at injection energy, as a function of distance s over two arc cells,
shown together with the criterion for the minimum aperture.
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Fig. 11.8: The calculated aperture at injection, using the standard injection optics with β∗ = 4.6 m, as a
function of distance s in IRJ (betatron collimation). It can be seen that a few elements in the dispersion
suppressor fall below the criterion for the minimum aperture.

In conclusion, using the preliminary aperture parameters that are taken over, or scaled from the3186

HL-LHC, we demonstrated that the aperture of FCC-hh is adequate for the presently considered optics3187

scenarios, with the vast majority of the elements around the FCC-hh ring meeting the specification.3188

While there are a few outliers, most of them can be cured by a simple switch of magnet type. For the the3189

remaining ones in magnets of the MQTLH type, some further studies are needed on the element design,3190

however, it is not believed to be a serious showstopper. The calculations should be repeated in the future3191

using updated parameters specifically tailored to the FCC-hh.3192

Table 11.3: Elements found below the minimum aperture at injection energy.

Element name s-location (m) Calculated aperture
MCBV.6RD.H1 25629 10.2 σ
MQTLH.[A-F]6LJ.H1 72169 11.5 σ
MCBH.6LJ.H1 71974 11.5 σ
MCBV.6RJ.H1 74659 11.7 σ
MCBH.6LD.H1 23254 12.5 σ
MQMO.6LJ.H1 71974 12.6 σ
MQMO.6RJ.H1 74658 12.8 σ

11.4 Simulations of the collimation system performance3193

In order to evaluate the cleaning performance of the system, tracking simulations of the loss pattern3194

around the ring are performed, which is the topic of this section. Different loss mechanisms are con-3195

sidered, and the output is used for further studies of energy deposition (in Sections 11.5–11.6) and the3196

thermomechanical response (in Sec. 11.7).3197

During collisions, the beam is squeezed to a small size at the interaction point, and in doing so,3198

the beam size is also blown up in the inner triplet magnets. These become the aperture restriction of3199
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the machine. At the same time, the crossing angle is enabled to prevent parasitic head on collisions and3200

long range beam beam effects. This reduces the available aperture. For the studies at top energy, this3201

worst case for the aperture is the configuration that is simulated. Studies were also done at injection with3202

un-squeezed optics, where the aperture restriction is in other regions of the machine, such as the arcs and3203

dispersion suppressors. The optics parameters used in the simulations are summarised in Table 11.4, and3204

the collimator settings in Table 11.1.3205

Parameter Unit Value
Optics version 9

Injection energy TeV 3.3
Collision energy TeV 50.0

Injection β∗ (IPA,IPG) m 4.6
Injection β∗ (IPB,IPL) m 27.0
Collision β∗ (IPA,IPG) m 0.3
Collision β∗ (IPB,IPL) m 3.0

Injection crossing angle (all) µrad 0
Collision crossing angle (IPA,IPG) µrad 100
Collision crossing angle (IPB,IPL) µrad 26

Table 11.4: A table showing the FCC-hh optics configuration used in this work.

Additionally an asynchronous dump is simulated at collision energy. This is an accidental loss3206

scenario, where the extraction kicker magnets do not fire at the correct time, or do not fire with sufficient3207

strength, resulting in the beam not being fully extracted from the storage ring correctly.3208

11.4.1 Simulation method3209

At both injection and collision, 3 possible beam loss scenarios are simulated. These are beam losses in3210

the horizontal plane, vertical plane, and both planes simultaneously (referred to as skew). Simulations3211

are carried out using the coupling [215–217] between SixTrack [21,43,218,219] and FLUKA [220,221],3212

where the first code tracks the particles through the whole ring and the second describes their interactions3213

in the collimator material, until they are lost in the latter by a nuclear inelastic reaction or they reach3214

elsewhere the machine aperture boundary. This framework has been benchmarked against measurements3215

with LHC beam losses, and the simulations agree well with the measurements [222].3216

The input beam distribution corresponds to a given loss scenario, while the output gives two com-3217

ponents. The first is the energy deposited into each collimator. In addition, the full phase space and3218

location of each particle is dumped if it touches the beam pipe aperture. These particles are considered3219

to be lost. These losses are then histogramed together to produce what is called a loss map. This shows3220

the loss locations around the ring. For this work a longitudinal binning size of 10 cm is used.3221

In the FLUKA coupling framework, only positively charged stable baryons are tracked around the3222

ring - e.g. protons, and heavy ions. All other particles are killed and are not tracked - their energy is3223

considered to be lost in the collimator or shortly after. An energy cut of 30% was used in FLUKA for3224

this work, meaning that particles below 70% of the initial energy are killed.3225

In analogy to Ref. [18], the cleaning inefficiency is defined as3226

ηc(s) =
E(s)

Etot∆s
, (11.1)

where ηc is the cleaning inefficiency, ∆s is the longitudinal binning size (10 cm in this work), E is the3227

energy that impacts the physical aperture in a given bin, and Etot is the total energy deposited in the3228
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full simulation (including inside collimator jaws). The required value of ηc that keeps all magnets below3229

quench level depends on the loss scenario and beam energy3230

11.4.2 Betatron cleaning3231

To study the betatron cleaning performance, where the halo is assumed to impact on the primary beta-3232

tron collimators, a ring of particles is generated in the phase space of the collimation plane (e.g. x,x’,3233

y,y’) with sufficient amplitude to just touch the primary collimator jaw, usually a with a flat distribu-3234

tion between 7.57 and 7.570001σ for a primary cut at 7.57σ. There is no amplitude in the vertical or3235

longitudinal plane; particles are injected on the reference orbit.3236

The halo, usually containing 100 million particles and generated at IPA, is then tracked for 2003237

turns, which is sufficient for most particles to be lost on a collimator in an inelastic interaction, or the3238

physical beam pipe aperture.3239

To calculate the required cleaning performance, a quench limit of 10 mW/cm3 is conservatively3240

assumed for a continuous power load into the magnet coils at 50 TeV, in accordance with the magnet3241

design assumptions3242

missing ref to sec magnets -> Insert reference to magnet section when merged.
3243

This is slightly higher than the design assumption for the LHC magnets at 7 TeV [223], but3244

it should be noted that recent studies of Nb3Sn magnets have shown significantly higher quench lim-3245

its [224]. The losses at quench can then be calculated to 2.2 × 105 p/m/s by scaling the LHC design3246

loss rate at quench (7.8 × 106 p/m/s [20]) by a factor 35, which is the estimated increase in energy3247

deposition per proton at 50 TeV compared to 7 TeV [225]. Finally, assuming an instantaneous loss3248

rate corresponding to a 12 minute BLT and full intensity, a maximum allowed cleaning inefficiency of3249

ηc,max = 3 × 10−7/m is found. Similarly, for a 12 minute BLT at injection energy, the quench limit is3250

estimated to ηc,max = 3× 10−5/m.3251

The simulated betatron cleaning at injection is shown in Fig. 11.9–11.11. The highest cold losses3252

around the ring stay well below ηc = 10−5/m and are thus considered safe.3253

The estimated losses at collision are shown in Fig. 11.12–11.14. This is considered the most3254

critical scenario. It can be seen that also in this case, the cleaning inefficiency around the ring is below3255

the estimated quench limit of ηc,max = 3× 10−7/m, which means that for a perfect case, the collimation3256

system should be able to protect the cold aperture even in the rather demanding scenario for a 12 minute3257

BLT. The shown results are for a horizontal beam halo but the results are not substantially different for3258

vertical losses.3259

With the removal of the skew TCP from the layout, the skew beam halo at collision provides an3260

interesting test of the performance of the system with this updated layout. Figure 11.16 shows losses3261

in the betatron collimation insertion with the skew primary removed, for a halo with equal horizontal3262

and vertical amplitudes. Instead of impacting a TCP, the beam first impacts the less robust TCSs. From3263

a cleaning perspective, the performance is kept; the losses into the cold regions of the machine are3264

not excessive thanks to the TCLDs, although significant losses appear downstream of IPA. A potential3265

concern for these losses is the robustness of the skew secondary collimators. From LHC operational3266

experience, skew losses are very rare. The solution is to place a stricter limit on the BLT due to losses in3267

the skew plane, consistent with the damage limit of the TCSs and the LHC operational experience.3268

11.4.3 Off momentum beam halo3269

For off-momentum losses, we study first the cleaning efficiency at the start of the ramp. The losses3270

from un-captured beam at the start of the acceleration are simulated by injecting a pencil beam of off-3271

momentum particles without betatron amplitude but with a δp/p such that they just impact the primary3272

momentum collimator jaw (an energy of 3294.8025 GeV is used instead of the reference 3300.0 GeV).3273
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Fig. 11.9: Image showing the full ring lossmap at injection for a horizontal beam halo.
image converted to pdf -> ask for the good pdf.
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Fig. 11.10: Image showing the betatron collimation
insertion lossmap at injection for a horizontal beam
halo.

image converted to pdf -> ask for the good pdf.

Fig. 11.11: Image showing the energy collimation
insertion lossmap at injection for a horizontal beam
halo.

The resulting losses are shown in Fig. 11.18. Assuming a 1% beam loss over 10 s, the instanta-3274

neous lifetime is about 17 minutes, which requires the inefficiency to stay below ηc,max = 4× 10−5/m.3275

As can be seen, all losses fulfil the criterion with some margin.3276

In collision, off-momentum losses can also be caused by uncaptured beam, but these losses are3277

expected to occur at a slow steady rate, and not as a brief impulse. Therefore the cleaning criterion is not3278

as strict as for the betatron case, where faster losses are more likely. Irregular losses could be faster, e.g.3279

during a fault of the RF system, however, such events are expected to be very rare. Dedicated simulations3280

are needed to quantify a limit on the allowed loss rate from off-momentum halo at collision energy.3281

11.4.4 Asynchronous beam dump3282

One possible failure scenario is that of the asynchronous beam dump. Here, one or more extraction3283

kicker could pre-fire asynchronously to the abort gap and hence cause an erroneous deflection of the3284

circulating beam. This could result in the beam not being correctly extracted from the storage ring to3285

the beam dump. In case of the LHC, such a failure would almost immediately re-trigger the remaining3286

extraction kickers. Nevertheless, in an extreme case, the beam risks impacting the machine aperture. For3287

FCC-hh, the proposed alternative abort strategy proposes a delayed synchronous beam dump, resulting3288

in part of the mis-kicked beam oscillating for one additional turn. -Dedicated collimators (TCDQ), as3289

well as septum protection (TCDS), are in place to protect against mis-kicked beam. However, beam3290

could leak out of the TCDQ or pass it in case of an error on the TCDQ position, or potentially sensitive3291

collimators or aperture bottlenecks could due to errors arrive at effectively smaller apertures than the3292
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Fig. 11.12: Image showing the full ring lossmap at collision for a horizontal beam halo.
image converted to pdf -> ask for the good pdf.
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Fig. 11.13: Image showing the betatron collimation
system at collision for a horizontal beam halo.

image converted to pdf -> ask for the good pdf.

Fig. 11.14: Image showing the energy collimation
system at collision for a horizontal beam halo.

image converted to pdf -> ask for the good pdf.
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Fig. 11.15: Image showing the full ring lossmap at collision for a skew beam halo.
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Fig. 11.16: Image showing the betatron collimation
system at collision for a skew beam halo.
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Fig. 11.17: Image showing the energy collimation
system at collision for a skew beam halo.
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Fig. 11.18: Image showing the full ring lossmap at injection for an off momentum beam halo.

71000 72000 73000 74000 75000 76000 77000 78000
s (m)

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

C
le

an
in

g 
in

ef
fie

nc
y 

(1
/m

)

Collimator Warm Cold Dipole Quadrupole Collimator

Fig. 11.19: Image showing the betatron collima-
tion system at injection for an off momentum beam
halo.
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Fig. 11.20: Image showing the energy collima-
tion system at injection for an off momentum beam
halo.

TCDQ. The collimation system should be able to survive such an accident.3293

In the version of the FCC used, the extraction takes place in the horizontal plane, and the system3294
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uses 300 segmented kicker magnets. It should be noted that a newer version exists, where the extraction3295

is instead vertical, and that these studies should be redone for that case. The goal of this study was to3296

obtain the maximum number of kicker magnets that could fire at the same time before damage occurs at3297

a collimator.3298

In the simulation, the beam was tracked for 1 turn, n extraction kickers were enabled on turn 2,3299

the beam was then tracked for one further turn and extracted. The initial conditions are for a full beam,3300

including also the core. The distribution corresponds to the sum of two gaussians: The core consists of3301

95% of particles, with a 1σ standard deviation, while the halo makes up the remaining 5%, with a 1.8σ3302

standard deviation as from the Van der Meer scans in Ref. [226]. Particles are generated up to the TCP3303

cut.3304

The resulting losses, for different number of kickers firing and normalized to the absolute number3305

of impacting protons, are shown in Fig. 11.21–11.24. This can be compared to an estimated damage3306

limit of 1 × 1011 protons. From the plots, it can be seen that up to 3 kickers can fire safely. For more3307

than 3 kickers, e.g. 4 or 5, it can be seen that this is potentially not safe. The updated layout of the3308

extraction insertion comprises 150 kicker magnets instead of 300. Furthermore, considering the impact3309

of the updated optics with a vertical kick the limit would be reduced to just 1 kicker pre-firing. For final3310

conclusions, studies on the influence of imperfections on the TCDQ position should also be carried out.3311

11.4.5 Influence of imperfections3312

The results of previous sections refer to an ideal machine. In reality, unavoidable imperfections of3313

the collimators and the rest of the machine affect the cleaning performance of the collimation system.3314

In order to evaluate their influence, several cases with combined imperfections have been simulated.3315

The error model is introduced in SixTrack following the procedure and experimental data used for the3316

LHC [20, 21]:3317

3318

1. Imperfections of the jaw flatness can reduce the length of material seen by the impacting protons.3319

The jaw flatness error is modelled by a second order polynomial applied over a number of slices:3320

± 4 · 10−4(
s2

l
− s)[m] (11.2)

where s is the longitudinal position along the jaw and l is the jaw length in m. In this study four3321

slices are used with the deformation bent outwards the beam as shown in Fig.11.25.3322

2. The beam orbit and center of the collimator gap are not always perfectly aligned, which were3323

modelled through random offsets of the centers of collimators with a standard deviation of 100 µm3324

(see Fig. 11.26).3325

3. Angular misalignments of the collimator jaws with respect to the beam axis are added with an rms3326

tilt angle of 200 µrad (see Fig. 11.26).3327

4. Random errors on collimator gaps were applied with a standard deviation of 0.17 σ, corresponding3328

to an rms β-beating of 4% as assumed for FCC-hh [227].3329

5. Tolerances of aperture misalignments for the different type of magnets are used to introduce im-3330

perfections in the alignment of the accelerator elements.3331

A full study of optics imperfections, adding magnetic and alignments errors in the lattice through3332

MAD-X and partially correcting them to get a realistic β-beating and orbit, has not been performed but3333

is foreseen as future work. Phase advance and dispersion beating can only be introduced with this second3334

method. Apart from the jaw flatness error, all the imperfections follow a Gaussian distribution cut at 3 σ3335

and are controlled by a seed. Twenty seeds are used for each scenario with combined imperfections. The3336
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number of seeds is limited by computational time, which represents several decades of computer CPU3337

time for this study.3338

The FCC-hh lattice used in this study is V9 for the beyond ultimate case with β∗ = 15 cm at3339

collision to investigate the most challenging scenario. The horizontal betatron loss maps have been sim-3340

ulated for multiple imperfection scenarios. The SixTrack version used for this study relies on the internal3341

scattering module [218] and the cleaning inefficiency in the following plots represents the fraction of3342

protons lost in a longitudinal bin normalised by the bin length (η = N∆s
lost/[Nlost∆s]). The collimation3343

system considered is the one of Table 11.1, however, in an earlier version with the skew TCP in IRJ still3344

in and all the TCSs made of CFC. The length of the TCPs is 60 cm, the TCDQ is 10 m in length whereas3345

other collimators are 1 m. The simulation setup is identical to the one in Sec. 11.4, but with an impact3346

parameter of 0.0015 σ.3347

In Figs. 11.27–11.28 we present the loss maps for the ideal case and an example with all imper-3348

fections. As expected, most protons are lost in the collimation regions IRF and IRJ. These results allow3349

us to predict where possible quenching events may occur, and give an indication about how to modify3350

the collimator settings along the accelerator in order to improve the system performance. The loss map3351

for the ideal machine in Fig. 11.27 shows very few cold losses compared with several blue spikes present3352

in the loss map with imperfections. Most of the cold losses appear between the detector IRA and IRB,3353

around the dump insertion region IRD and downstream the RF insertion IRH. The majority of loss maps3354

with all imperfections activated show a similar behaviour.3355

The influence of different imperfection types on the losses on collimators is summarised in3356

Fig. 11.29 where ratio of losses on different collimator families to the TCP losses is presented. In3357

the horizontal axis the different cases are indicated starting from the ideal case and then adding the3358

imperfection types in steps. Each point represents an average over the 20 seeds with their standard3359

deviation. For all cases the ratio below one indicates that no hierarchy breaking has been observed in3360

simulations, including the error bars. For TCLAs, TCDQ, and TCLDs, a slight increase can be observed3361

with wider error bars. In Fig. 11.30, we present the ratio between the TCT losses and the TCP losses.3362

In this case, the TCT losses increase as more imperfections are included. It can be seen that with all3363

imperfections, losses in tertiaries are about 4 times higher with respect to the ideal case, which could3364

have a potential impact on the machine-induced background.3365

The warm and cold global inefficiencies, defined as the sum of all inefficiencies in warm and3366

cold apertures of the machine, are shown in Fig. 11.31. The changes to the global inefficiency for3367

warm elements is within the error bars. For cold elements an increase of factor 2 with respect the ideal3368

case is observed after introducing offsets errors of the collimator gaps. Including tilt errors, the global3369

inefficiency is about a factor 5 higher than in the ideal case, while adding gap and flatness errors gives as3370

final increase a factor of about 6.3371

The highest cold losses in a single 10 cm bin are presented in Fig. 11.32. Most of the simulations3372

with imperfections show an almost complete loss of all protons (more than 95%). For the ideal case3373

the number of simulated protons was increased to 140M to get a similar amount of total losses and a3374

comparable ηc for a loss of a single particle in the simulation. Fig. 11.32 indicates that on average only3375

a single proton is lost in a single longitudinal bin for the ideal case and for the offset-tilt cases. When3376

adding gap errors and flatness imperfections the inefficiency in a single location increase up to 3 times3377

the single event inefficiency, however, most seeds stay within the estimated requirement of ηc,max =3378

3 × 10−7/m, which gives confidence in the system performance. For the ultimate optics case of this3379

study, the highest cold peak increases by a factor 2 on average and the global cold inefficiency by a3380

factor 4.3381
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Fig. 11.21: Image showing the loss distribution
with 1 extraction kicker pre-firing.

image converted to pdf -> ask for the good pdf.

Fig. 11.22: Image showing the loss distribution
with 3 extraction kickers pre-firing.

image converted to pdf -> ask for the good pdf.

Fig. 11.23: Image showing the loss distribution
with 4 extraction kickers pre-firing.

image converted to pdf -> ask for the good pdf.

Fig. 11.24: Image showing the loss distribution
with 5 extraction kickers pre-firing.

image converted to pdf -> ask for the good pdf.
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Fig. 11.25: Jaw deformation for 1 m long colli-
mator modelled by a 2nd degree polynomial in red
and the 4 slices approximation used in SixTrack in
dashed blue.

ideal	

ideal	

Half	Gap

Ideal	beam	orbit	=	geometric	center

q

Offset	of	
gap	center

Fig. 11.26: Illustration of the various errors applied to collimator in
simulation.
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Fig. 11.27: Horizontal loss map for the ideal case without imperfections.
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Fig. 11.28: Example of horizontal loss map with all imperfections considered.
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Fig. 11.29: Influence of imperfections on different
horizontal collimator losses as simulated by Six-
Track.
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Fig. 11.30: Influence of imperfections on different
horizontal tertiaries collimator losses as simulated
by SixTrack.
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Fig. 11.31: Global cold inefficiency calculated as
sum of all collimator imperfections for all com-
bined scenarios.
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Fig. 11.32: Highest cold inefficiency in a single
longitudinal bin of 10 cm for different combined
scenarios.
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11.5 Energy deposition in cold magnets3382

The tracking simulations described in the previous sections give as output the distribution of protons lost3383

on the apertures around the ring. Based on this, an approximate estimation was made on whether the3384

protection of the cold aperture is adequate. For a detailed assessment of particularly critical locations,3385

it is required to perform local energy deposition studies. In particular, the impacts on the collimators3386

cause secondary particle showers that are not evaluated in the tracking simulations and which can extend3387

into neighbouring magnets. In this section we therefore examine the expected energy deposition in the3388

dispersion suppressor of IRJ, which is the most critical cold part of the machine, and in particular in the3389

cold magnets installed downstream of the TCLDs.3390

The Monte Carlo program FLUKA [220,221] was used in order to evaluate the energy deposition3391

in the cold region around a TCLD, downstream of the betatron cleaning insertion straight section [228].3392

The distribution of protons leaking out of the upstream betatron collimators at the start of cell 8 was used3393

as starting conditions. They were extracted from tracking simulations carried out at 50 TeV using the3394

MERLIN code [229, 230], and the FCC-hh lattice as of 2017 [231]. Only cell 8, including the TCLD,3395

was simulated, in the assumption that the situation around the other TCLD in cell 10 would be similar or3396

better. An identical result and mitigation strategy can thus be assumed for cell 10.3397

A 3D geometry of the region was implemented as shown in Fig. 11.33, including the TCLD and3398

two downstream magnets (a quadrupole and a dipole). Since at the time of the study a detailed geometry3399

of the dipole was not available, simplified models based on the current LHC magnets were used with the3400

addition of the FCC coil design and beam screen [232]. Magnetic fields were included in both magnets,3401

modelled as perfect quadrupolar or dipolar fields, extending over the vacuum chamber, beam screen and3402

cold bore. The collimators were modelled as two parallel blocks of the tungsten alloy Inermet 180,3403

including a tapering part. The masks were modelled as cylinders of the same material. Full details can3404

be found in Ref. [228].3405

In the FLUKA simulations, typically 4 × 106 protons were simulated, and the energy deposition3406

was scored in the coils of the dipole and quadrupole. To normalise the simulated energy deposition per3407

lost proton, a 12 minute BLT was assumed for the nominal FCC-hh beam parameters at 50 TeV, with all3408

losses impacting on the primary collimator, in order to obtain a power load in the superconducting coils.3409

For the studies, several layouts of TCLDs and masks were tested and iteratively adjusted until a3410

satisfactory solution was found. The final proposed layout includes a main 1.0 m long TCLD, followed3411

by a second 1.5 m TCLD, and a 0.5 m mask in front of the quadrupole. An additional 1.5 m TCLD and a3412

0.15 m mask were placed in front of the dipole. For this layout, labelled “Updated design”, the resulting3413

energy deposition along the length of the coils of the quadrupole and dipole is shown in Fig. 11.34. For3414

every longitudinal position, the figure shows the maximum over all bins transversely.3415

In the figure, the simulated power load has been scaled up by a safety margin of a factor 8. This3416

factor includes both the effect of imperfections, not included in the tracking simulations used here, and3417

the underestimation of the measured energy deposition found in previous studies of the LHC [21], even3418

after imperfections were included.3419

It can be seen in Fig. 11.34 that for a previous layout iteration consisting of only two 1 m TCLDs3420

and a single mask, the power load exceeds the estimated quench limit of 10 mW/cm3, while for the final3421

layout with 3 TCLDs and two masks, it is well below. As noted before, this limit is likely pessimistic in3422

view of the recent estimates of a 100-200 mW/cm3 quench limit of the 11 T magnet [224], developed for3423

HL-LHC and also based on Nb3Sn technology. This gives a significant safety margin in the final design,3424

which based on these simulation results should be able to protect the cold aperture of the ring against3425

quenches for a 12 minute BLT. Although these studies should be redone for the latest version of the3426

FCC-hh lattice, which might cause minor layout changes, it is unlikely that the qualitative conclusions3427

will change.3428
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Fig. 11.33: FLUKA geometry as implemented in cell 8 in the dispersion suppressor of IRJ, including
three TCLDs and two fixed masks [228]. The collimators and masks are shown in green, the quadrupole
in red, and the dipole in blue.

image converted to pdf -> ask for the good pdf.
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Fig. 11.34: Peak power density along the quadrupole (left) and dipole (right) in cell 8 for the final
protection design and the previous solution with the a factor 8 safety margin included [228].
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11.6 Energy deposition in warm betatron section3429

The power deposition is of high importance not only on the superconducting magnets, but also on the3430

collimators themselves and on other elements in the warm section. The extreme load during a 12 minute3431

BLT drop corresponds to a beam loss power of 11.6 MW, which is 24 times higher than for the nominal3432

LHC and it should be sustained up to 10 s. This represents a severe challenge for the robustness of the3433

collimators and other exposed elements. Therefore, this section presents energy deposition studies of all3434

elements in the warm section using FLUKA.3435

A cut of the initial part of the FLUKA model of the whole 2.7 km insertion is shown in Fig-3436

ure 11.35. An earlier version of the collimator configuration was used, which is identical to the one in3437

Table 11.1 except that all TCSs are made of CFC. As in the LHC, three passive absorbers (TCAP), made3438

of tungsten and copper, with lengths of 1.5 m, 0.4 m and 1 m, respectively, are placed in front of the most3439

exposed magnets. Figure 11.36 shows the components of the collimator jaws as modelled, while a 3D3440

view of a part of the tunnel is given in Figure 11.37.3441

In order to perform particle shower simulations and calculate energy deposition in the various3442

beam line elements, maps of beam halo protons touching the collimator jaws are fed to FLUKA. These3443

are produced by the above-mentioned online coupling between SixTrack and FLUKA. The relevant phase3444

space details of each collimator hit is dumped as input for the second step of the simulation, performed3445

by FLUKA only over its geometry model, as partially shown in Figure 11.35. Before being removed3446

from the halo by either hitting the aperture or inelastic interactions inside a collimator, a halo proton3447

touches the collimators on average more than once. Its hits are kept in the maps only if they occur in3448

distinct turns, since possible multiple hits in the same turn are replicated in the course of the shower3449

propagation.3450

As a representative case, the vertical halo scenario, where hits are concentrated in the first TCP,3451

was investigated through successive iterations. This case is more critical than horizontal losses, since the3452

vertical TCP is most upstream and there is thus more distance within the section of the TCPs over which3453

the shower can develop. In order to limit the power deposition on the jaws, three design measures were3454

implemented. First, the TCP active length was halved with respect to the LHC (from 60 cm to 30 cm),3455

this way reducing the shower development inside the absorbing material. Then the jaw thickness was3456

increased (from 2.5 cm to 3.5 cm and 4.5 cm, for TCPs and TCSGs, respectively), since the metallic3457

parts of the jaw cooling circuit turned otherwise out to be subject to the highest power density, being too3458

close to the secondary particle shower core. Finally, the skew primary collimator, still collecting a total3459

power significantly exceeding 100 kW for the design BLT of 12 minutes, due to its downstream position3460

from the horizontal and vertical primaries, was removed.3461

The amount of the power deposition on the beam line elements and the infrastructure for the3462

resulting configuration is reported in Figure 11.38. Almost half of the power is taken by the tunnel walls,3463

while a significant fraction is absorbed by the beam pipes, along 2.7 km.3464

Table 11.5 details the loads on the collimation system elements. Among those in CFC, the first3465

secondary collimator represents the most critical case. However, despite an integral load 14 times lower,3466

the primary collimator directly impacted by the beam halo (TCP.D) is the one exposed to the highest3467

power density, due to the multi-turn ionization by primary protons at extremely small impact parameters.3468

Figures 11.39 and 11.40 show the power density distribution in the vertical TCP. For the design3469

BLT of 12 minutes, the maximum value is at 50 kW/cm3 on the jaw surface layer, but 100 µm inside one3470

already gets one order of magnitude less.3471

The horizontal TCP, which in the considered scenario is rather exposed to the particle shower from3472

the upstream collimator, takes a total power 12 times higher than the latter, but its peak power densities3473

are dramatically lower, up to 55 W/cm3, albeit extended to a well larger area.3474

As pointed out above, the first TCS is affected by more severe conditions. Figure 11.41 illustrates3475

the 3D distribution of its nearly 100 kW, showing also the picture obtained with the standard LHC jaw3476
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Fig. 11.35: FLUKA model of the first 800 meters of the betatron collimation insertion.
image converted to pdf -> ask for the good pdf.
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Fig. 11.36: FLUKA model of a collimator jaw.
image converted to pdf -> ask for the good pdf.

thickness of 2.5 cm that induces power density values up to 800 W/cc in the cooling pipes and an integral3477

load almost 2.5 times higher. With the proposed thickness increase to 4.5 cm, a maximum of 115 W/cc3478

is found in the absorbing material. For the following collimators, this measure is less critical. Further3479

studies of the thermo-mechanical response of the most critical collimators are shown in Sec. 11.7.3480

The two 17 m long warm dipoles that close the dogleg are particularly impacted, being exposed3481

to the particle showers from the primary collimators. The second module, in the presence of the shortest3482

passive absorber in front of it, collects more than 1 MW for a 12 min BLT. For reference, the LHC3483

module, which is 5 times shorter, takes 22 kW assuming the same BLT with nominal beam parameters.3484

As shown in Figure 11.42, the MBW.A6 non-IP face reaches 270 kW/m, while over most of its length the3485

absorbed power is at about 60 kW/m, which translates into a linear load from 10 kW/m to 100 W/m for3486

more regular BLTs of 1 to 100 hours. This calls for a suitable cooling system and a further optimisation3487

of the front face protection, considering that the first meter of the magnet absorbs more than 10 % of the3488

total power.3489

Looking at the dose accumulated in the coils, it is clear from Fig. 11.43 that a critical gain is3490

provided by the mechanical design, where the return coils are kept as far as possible from the beam pipe.3491

If the LHC design would have been kept, with return coils closer to the beam, a one order of magnitude3492

higher localised peak dose is expected.3493

186



Fig. 11.37: 3D view of the FLUKA model of the Betatron cleaning insertion dogleg, hosting the primary
collimators.

image converted to pdf -> ask for the good pdf.

11.6.1 Ozone production3494

From the calculation of energy deposition in air, one can estimate the resulting concentration of ozone3495

through the formula:3496

NOs
(ppm) = 9.28× 10−15 ×G(eV −1)

PeV ( eVs )τ(s)

V (cc)
[1− e

−t
τ ] (11.3)

where the numerical constant is the ratio between the O2 concentration and the number of air3497

molecules per cm3, G is the number of O3 molecules produced by the absorption of 1 eV (typically 0.063498

to 0.074eV−1) and3499

τ(s) =
1

(α+ 1
τvent

+ kPeV
V )

(11.4)

being3500

α(
1

s
) = 2.3e− 4 & k(eV −1cm3) = 1.4× 10−16 (11.5)
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Fig. 11.38: Power sharing in the betatron collimation insertion. The missing energy fraction refers to the
energy spent in endothermic nuclear reactions as well as carried away by generated neutrinos.
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Fig. 11.39: Peak power density profile along the
length of the two jaws of the vertical TCP.
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Fig. 11.40: Transverse power density distribution
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the ozone dissociation and decomposition constants, respectively. The second addend of the sum3501

in 11.4 is the air renewal rate, i.e. the inverse of the ventilation time τvent needed to fully renew the3502

considered volume of air V.3503

In our model, the assumption of an average loss rate corresponding to 1016 protons per beam lost3504

in the collimation system over an annual operation time of 5000 beam-hours yields a power deposition of3505

100 W in an air volume of 58000 m3. Since 1
α = 1.2 h, a ventilation time larger than several hours would3506

give for this power density in air an ozone concentration of 0.03 ppm. To achieve a factor 10 reduction,3507

a ventilation time of 8 minutes would ideally be required.3508
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Table 11.5: Total power on collimators and absorbers for 12 min BLT

Primaries Power (kW)
TCP.D6L 6.5
TCP.C6L 80

Scondaries Power (kW)
TCSG.A6L 92
TCSG.B5L 9.8
TCSG.A5L 41
TCSG.D4L 33
TCSG.B4L 6.4
TCSG.A4L 12
TCSG.A4R 14
TCSG.B5R 3.3
TCSG.D5R 7.2
TCSG.E5R 12.5
TCSG.6R 2.3

Active absorbers Power (kW)
TCLA.A6R 36.5
TCLA.B6R 2.0
TCLA.C6R 2.2
TCLA.D6R 1.6

Passive absorbers Power (kW)
TCAPA.6L 545
TCAPB.6L 78
TCAPC.6L 484

Fig. 11.41: Power density distribution in the first secondary collimator for 12 min BLT. Left: LHC jaw
thickness of 2.5 cm. Right: proposed jaw with thickness of 4.5 cm.
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11.7 Collimator robustness3509

Preliminary finite element analyses have been conducted on the most loaded TCS and TCP jaws. Simu-3510

lations were carried out using the finite element software Ansys v18.2. To begin with, a thermal analysis3511

was performed, using as input the beam-induced energy deposition from FLUKA, described in Sec. 11.6.3512

A static structural analysis was then coupled to the thermal study to obtain the mechanical response of3513

the system. A detailed explanation of the method and of the adopted relevant assumptions can be found3514

in Ref. [233].3515

Starting from LHC specifications, CFC is adopted as constitutive material for the most loaded3516

collimators. In this study, losses during both 1 h and 12 minute BLT are considered for the secondary3517

collimator, while only the 12 minute BLT scenario is taken into account for the TCP. This choice is3518

driven by the fact that the 1h BLT scenario for the TCP involves a smaller amount of power than the 1 h3519

BLT case for the TCS (which features the same overall geometry of the TCP), resulting in a less severe3520

case regarding the assessment of the global response of the system (e.g. in terms of thermally-induced3521

deflections of the jaws). Since the goal is to analyse the robustness of the TCP components, which is3522

mainly affected by energy deposition density peaks, only the more severe case of 12 minute BLT is3523

considered for TCPs.3524

In the 1 h BLT scenario, the beam-induced power deposition is applied in steady state. For the3525

12 minute BLT scenario, starting from this steady condition, the associated losses are ramped up during3526

10 ms and then kept for 10 s, to be subsequently ramped down again in 10 ms to the 1 h BLT load (see3527

Fig. 11.44).3528
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Fig. 11.44: Load profiles considered in the thermo-structural analyses for a) the 1h BLT and b) the 0.2h
BLT load case.

All analyses are carried out considering heat loads associated to a design scenario with the skew3529

TCP removed, the TCPs shortened to 30 cm and the thickness of TCPs and TCSs increased to 3.5 cm and3530

to 4.5 cm respectively. Moreover, given the preliminary nature of the study, some simplifying assump-3531

tions are made: a perfect bonding between the CFC absorbers and the Glidcop housing is assumed, as3532

well as a linear constitutive law for the absorbers and a constant temperature profile for the water flowing3533

inside the cooling circuit. The following sections discuss the results.3534

11.7.1 TCS collimator3535

The design of LHC TCSP collimators is considered as base design for the analysis on the most loaded3536

TCS, namely the TCSG.A6L: the only difference among the two designs is that the former has Glidcop3537

taperings to host the beam position monitors (BPMs), while the latter features CFC taperings (and no3538

BPMs), and that the CFC thickness is increased by 2 cm.3539

The peak temperatures found on the jaw for the 1 h and 12 minute BLT cases are about 164 ◦C3540

and 330 ◦C, respectively, as shown in Fig. 11.45. This induces thermal deformations, strains and stresses3541

on the different components, because of the temperature gradient and the thermal-expansion coefficient3542
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Fig. 11.45: Beam-induced temperature fields on the first TCS for 1 h BLT (left) and 12 minute BLT
(right).

image converted to pdf -> ask for the good pdf.

mismatch among the different materials constituting the jaw. Temporary beam-induced deflections of3543

up to 185µm and 246µm are obtained for the 1 h and 0.2 h BLT cases, respectively (see Fig. 11.46).3544

Non-negligible strains are present in the contact region between the CFC absorbers and the housing:3545

these values are mostly due to the bonded contact introduced in the model (perfect bonding) and to the3546

linear character of the constitutive law considered in the analyses for the absorbers, which both lead to3547

an overestimation of the rigidity of the structure.3548

Fig. 11.46: Normal deflections of the TCS jaw for 1 h BLT (left) and 12 minute BLT (right).
image converted to pdf -> ask for the good pdf.

Finally, the cooling pipes are found to experience plasticity (see Fig. 11.47). The elastic limit of3549

the constituting material, CuNi 90-10, is about 100 MPa and it is largely exceeded both in the 1 h and3550

in the 12 minute BLT case. This issue is not a showstopper, as it can be mitigated by adopting a higher3551

yield-strength material for the cooling circuit.3552

11.7.2 TCP collimator3553

As done for TCS collimators, with which they share the same geometry apart form the absorber thickness,3554

the design of LHC TCSP collimators is considered as base design to carry out the analyses also on the3555

vertical TCP, which is exposed to the highest power deposition density peak. In this case, however, only3556

a 30 cm long region of the 3.5 cm thick absorbers has been considered to be subject to power deposition.3557

The maximum temperature found on the CFC is about 660 ◦C, as shown in Fig. 11.48: as a result, a3558
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Fig. 11.47: Stress intensity for the first TCS in the CuNi 90/10 cooling pipes for 1 h BLT (left) and
12 minute BLT (right).

image converted to pdf -> ask for the good pdf.

maximum stress of 45 MPa is induced in the absorber-housing contact region along the direction normal3559

to the planes constituting the CFC absorber, with an estimated associated strain of about 8000µm/m,3560

theoretically leading to failure (see Fig. 11.49).3561

Fig. 11.48: Beam-induced temperature fields on the vertical TCP for the 12 minute BLT case.
image converted to pdf -> ask for the good pdf.

Fig. 11.49: The estimated stress (left) and strain field (right) on the CFC absorber of the vertical TCP for
the 12 minute BLT case.

image converted to pdf -> ask for the good pdf.

However, similar temperatures have already been achieved repeatedly on CFC absorbers during3562
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past experimental campaigns, without reporting any sign of failure [234, 235]. In the HRMT-23 experi-3563

ment, CFC absorbers reached a peak temperature of 685 ◦C when impacted by 288-bunches with a total3564

intensity of 3.79×1013 protons and σ=0.35mm. Furthermore, in the HRMT-36 experiment, CFC samples3565

experienced a grazing pulse of 288 bunches, with a total intensity of 3.72×1013 protons and σ=0.25 mm.3566

No failure was found in either case, despite thermal gradients which largely exceed those at hand in the3567

present study shown in Fig. 11.50.3568

Fig. 11.50: The temperature field over the CFC absorbers in HRTM-23 [234] (left) and the Mo-coated
CFC sample impacted by a grazing shot which melted the coating leaving the CFC substrate unbroken
[235] (right).

image converted to pdf -> ask for the good pdf.

Fig. 11.51: Beam-induced normal deflection on the vertical TCP for the 12 minute BLT case.
image converted to pdf -> ask for the good pdf.

The obtained high values of stress and strain are therefore thought to be largely due to the simpli-3569

fied nature of the absorber-housing contact adopted in the analysis, as well as to the hypothesis of linear3570

elasticity considered for CFC. Both these assumptions cause a much stiffer structure than the real case.3571

For the same reason, the obtained beam-induced bending deflection of 155µm shown in Fig. 11.51 is3572

believed to underestimate the real deformation of the jaw. Regarding the cooling circuit, a maximum3573

stress of 26 MPa is found, much below the elastic limit for CuNi 90-10. No plasticity is observed in the3574

housing either, where a stress peak of 106 MPa is estimated against a yield stress for Glidcop of 294 MPa3575

(see Fig. 11.52).3576
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Fig. 11.52: Stress intensity in the CuNi 90/10 cooling pipes (left) and the Glicop housing (right) of the
vertical TCP during 12 minute BLT losses.

image converted to pdf -> ask for the good pdf.

11.7.3 Result assessment3577

Thermo-mechanical analyses conducted on the most loaded TCS and TCP collimators highlighted some3578

critical points which, without representing any clear showstopper at this stage, will need to be addressed3579

in future design developments. The only case where permanent deformations occur is in the cooling3580

pipes of the TCS, however, it is believed that this can be mitigated in a straight-forward way by a different3581

material choice for the pipes.3582

Temperature peaks up to 660 ◦C are observed in the CFC absorber of the vertical TCP, theoretically3583

leading to failure. However, past tests have shown that no failure occurred in CFC absorbers at these3584

simulated temperatures [234, 235]: the numerical overestimation of stresses and strains is thought to be3585

largely ascribable to the simplifying hypotheses introduced in the numerical models, leading to a stiffer3586

structure. For the same reason an underestimation of the beam-induced bending deflections must be3587

considered for both the case of TCS and TCP, where temporary deformations stay above 100µm for all3588

the analysed load cases. It should be assessed in future studies if this has an impact on the cleaning3589

inefficiency. Another potential concern is that the outgassing from graphitic materials such as CFC risks3590

to be very high at the simulated temperatures. The resulting beam vacuum and the possible need for3591

additional pumping should be evaluated in future studies.3592

Different directions of improvement could be considered to address the points raised above. A3593

summary of proposals would include:3594

– lighter absorbers, to minimise the energy density on the jaw, e.g. carbon foams [236]3595

– more rigid housing and stiffener;3596

– higher water flow in the cooling pipes;3597

– monitoring, and possibly deformation-correcting, systems. A project in this sense is already3598

launched between CERN and the University of Huddersfield [237]3599

11.8 Advanced concepts and key R&D3600

The studies presented above are based on a collimation system that is scaled up from the LHC but using3601

similar physical hardware. The simulations show that special measures have to be taken to ensure safe3602

operation with acceptable collimator loads during BLT drops, such as the removal of the skew TCP.3603

One important path for general improvements of the collimation system is to study novel materials with3604

improved robustness and acceptable impedance. A more optimized and robust system design could be3605
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obtained with such materials if the skew TCP could be kept. A novel mechanical collimator design3606

could also be investigated as an option to further improve the robustness. Furthermore, the cleaning3607

performance might be improved through design iterations on the optics and layout of the two dedicated3608

collimation insertions, and the potential addition of more fixed masks.3609

Alternative collimation techniques, such as crystal collimation [238] are another path of future3610

study. With this technique, bent crystals are used to channel impacting halo particles and give them an3611

angular kick that is large enough to make them impact deeply at a downstream absorber. Experiments3612

using an LHC test installation [239] have shown a significant improvement of the cleaning efficiency3613

with Pb, Xe, and proton beams [240]. However, since the power deposition of the lost particles will be3614

concentrated on the absorber, its design is very challenging.3615

Another area of future studies is the control of the beam halo. It has been estimated that for the HL-3616

LHC, the amount of energy present above 3.5 σ in betatron amplitude is 35 MJ [241]. With a factor 123617

higher total stored beam energy in the FCC-hh, the total energy in the halo alone risks to be of the order3618

of 400 MJ, which is more than the total 362 MJ design stored energy of the LHC beam. Any movement3619

or jitter in the orbit risks to cause large losses and beam dumps, that reduce the machine availability. One3620

solution could be to use a hollow electron lens, as studied for HL-LHC [23]. By controlling the diffusion3621

speed of halo particles, one can act on the time profile of the losses, for example by introducing a steady3622

and controlled halo depletion, so that static halo population is significantly reduced. This would reduce3623

the amount of beam scraped during any orbit movement. The parameters and feasibility of a hollow3624

electron lens for FCC-hh remain to be studied.3625

11.9 Conclusions3626

In this document, a detailed design of the FCC-hh collimation system has been presented, including both3627

the needed collimators and the beam optics. The assumed hardware design of the collimators is based3628

on concepts from the LHC and HL-LHC but with some further developments to cope with the very high3629

power loads expected during the FCC-hh beam loss scenarios. Infrastructure requirements include, as for3630

the LHC, cooling water circuits, controls, and remote inspection and handling and high-radiation areas.3631

The performance of the FCC-hh collimation system has been studied in detail through particle3632

tracking, energy deposition, and thermo-mechanical simulations. In spite of a stored beam energy of3633

8.3 GJ, it has been shown that the cleaning performance largely meets the requirements and that the ma-3634

chine can be protected from quenches during lifetime drops down to 12 minutes, which is pessimistically3635

taken as a specification for the betatron cleaning. This has been achieved through the use of a system3636

based on the LHC design but with the addition of extra dispersion suppressor collimators as well as local3637

protection to alleviate losses at some critical locations. The cleaning of off-momentum losses at the most3638

critical scenario, where the unbunched beam is lost rapidly at the start of the ramp, has also been found3639

to be within the estimated limits.3640

The collimators themselves will be subject to very high loads during sharp BLT drops and this is3641

a major challenge for the system design. Energy deposition studies and thermo-mechanical simulations3642

have been used to study and optimize the loads, and through changes in the collimator design the resulting3643

peak power load can be brought down to tractable levels. Some issues still remain to be solved but they3644

are not believed to be showstoppers. Other elements in the warm collimation section, such as the passive3645

absorbers and the warm dipoles, receive very high instantaneous power loads, and the design and cooling3646

of these elements need further study and optimization.3647
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