Implementation of SR absorbers in the aperture model

R. Martin

FCC collimation design meeting #22 March 18, 2019

Magnet interconnects

C. Garion, I. Bellafont et al.

Magnet interconnects

C. Garion, I. Bellafont et al.

Implementation in MAD-X

- Implemented as MARKER at narrowest position
- ⇒ also largest sagitta before inner chamber size increases

Synchrotron absorber bottle neck

Beam screen I. Bellafont, C. Garion et al.

Narrowest SR absorber aperture I. Bellafont, C. Garion et al.

- Same beam chamber size as beam screen
- Smaller slit depth
- Slit depth in MAD-X model was already limited ⇒ almost no difference

Sagitta

- Sagitta previously included a little margin for beam screen beyond magnet but not much
- SR absorber bottle neck about 66.5 cm behind magnet
- Sagitta model: only "dipole sagitta" centered in dipole

- Best in terms of field errors and dynamic aperture, worst in terms of mechanical aperture
- $\frac{s}{2} + \Delta x = 1.63 \, \text{mm}$

Arc apertures: Arc cell AB

Arc apertures: Arc cell BC

DS apertures: Narrowest point in LB

 $\mathrm{BSC}>13.5\,\sigma$

Why is aperture still ok?

- Sagitta increased significantly in SR absorbers, but...
- "New" beam stay clear at injection: 13.4 σ (was 15.5 σ when we gave "worst case ellipses" to vacuum group)
- Better field quality in arc dipoles \Rightarrow smaller arc β function at injection